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SUMMARY 
Cardiovascular disease (CVD) is the number one cause of death in the US. 

Atherosclerosis, an inflammatory disease characterized by plaque accumulation on the 

arterial walls, is the major cause of CVD1,2. Atherosclerotic plaque rupture (thrombosis 

and embolism) blocks blood flow and oxygen delivery to tissues thereby causing a heart 

attack or stroke3. While there are several known risk factors and behaviors that increase 

the likelihood of developing atherosclerosis, the underlying cause of the disease remains 

unknown4.  

Atherosclerosis typically occurs in curves or branches in the vasculature where 

disturbed blood flow alters gene expression and induces endothelial cell (EC) 

dysfunction. Blood flow generates shear stress on vascular ECs. Unidirectional, laminar 

shear stress (LS, or s-flow) is crucial for normal vascular function, whereas low, 

disturbed flow (d-flow), and oscillatory shear stress (OS) causes vascular dysfunction and 

disease 5-9. ECs have dramatically altered gene expression patterns when exposed to d-

flow versus s-flow 10-15. 

Epigenetics controls aberrant gene expression in many diseases, but the 

mechanism of flow-induced epigenetic gene regulation in ECs via DNA methylation has 

not been well studied until very recently. The goal of this project was to determine how 

the DNA methylome responds to flow, causes altered gene expression, and regulates 

atherosclerosis development. The majority of our findings were published in the Journal 

of Clinical Investigation in May 2014 our research article titled Flow-dependent 

epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis16. 

We found that d-flow increases DNA Methyltransferase 1 (DNMT1) expression in ECs, 

and we hypothesized that this causes a shift in the EC methylome and transcriptome 
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towards a pro-inflammatory, pro-atherosclerotic gene expression program, and further 

that this leads to atherosclerosis development.  

To test this hypothesis, we employed both in vitro and in vivo experimental 

approaches combined with genome-wide studies of the transcriptome and DNA 

methylome and computational systems biology analyses according to the following three 

specific aims: 1) to elucidate the role of DNA Methyltransferase 1 in EC function, 2) to 

uncover the DNA methylation-dependent EC gene expression response to flow, and 3) to 

discover and examine master regulators of EC function that are controlled by DNA 

methylation. 

Our in vivo technique, mouse partial carotid ligation, induces d-flow in the left 

carotid artery (LCA) while the s-flow right carotid artery (RCA) serves as an internal 

control. Data from our lab’s previous in vivo mouse carotid artery mRNA microarrays 

implicated DNMT1 as a potentially functionally important mechanosensitive gene in EC 

biology that is upregulated by d-flow17. In Aim 1, we found that DNMT1 is upregulated 

by d-flow at the transcript and protein level in vivo and in vitro. DNMT1 inhibition using 

the chemical inhibitor 5-Aza-2’deoxycytdine (5Aza) or DNMT1 siRNA was done in 

vitro prior to shear in HUVECs, and 5Aza was used in mouse models of atherosclerosis 

to determine the functional outcome of blocking DNMT1 overexpression in d-flow. We 

show that DNMT1 inhibition by 5Aza inhibits inflammation and global methylation in 

ECs in vitro and plaque development in both acute and chronic murine models of d-flow-

induced atherosclerosis in vivo. Preliminary studies exploring the mechanism of upstream 

DNMT1 regulation point to the mir29 family as potential mechanosensitive regulators of 
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this pathway. This work establishes the importance of DNMT1 in EC biology and 

atherosclerosis. 

In the second aim we sought to determine the functional importance of DNMT1 

overexpression by d-flow and also the mechanism of action of DNMT inhibition by 5Aza 

in d-flow-exposed endothelium. Since DNMT1 is known to methylate genomic DNA and 

DNA methylation is a regulator of gene expression, we designed two parallel “omics” 

studies to examine the effects of both d-flow and DNMT inhibition on the EC DNA 

methylome and transcriptome in vivo. We carried out reduced representation bisulfite 

sequencing (RRBS) using EC-enriched genomic DNA (gDNA) obtained from the RCA 

and LCA of partially ligated mice at two different time points of two days and one week 

post-ligation. To further determine whether the flow-dependent DNA methylation 

changes were regulated in a DNMT-dependent manner, mice treated with 5Aza were 

compared to a saline vehicle control. Moreover, to determine which mechanosensitive 

genes have transcriptional dysregulation, potentially by DNA hypermethylation, we 

carried out a concomitant gene transcript microarray study using EC-enriched RNA 

obtained from the LCA and RCA of partially-ligated mice treated with either saline 

(RCA vs. LCA) or 5Aza (Aza-RCA vs. Aza-LCA). From these studies we found that 

DNMT inhibition by 5Aza rescues global gene expression in the d-flow-exposed LCA to 

a healthy state. While genome-wide DNA methylation and specific functional genomic 

elements did not have dramatically changed methylation under these conditions, we 

followed a specific hypothesis and discovered a subset of genes that have d-flow-induced 

promoter hypermethylation correlating with gene suppression, both of which were 5Aza-

reversible. Based on systems biology and further bioinformatics analysis, we found that 
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gene promoters containing cyclic AMP Response Elements (CRE) are preferentially 

demethylated at their CG sites as compared to other promoter CG sites in the RCA. 

Additionally, these promoter CRE CG sites are specifically hypermethylated by d-flow. 

We further discovered that, on the genome scale, CRE CG hypermethylation corresponds 

to decreased gene expression. These studies, described in detail in Aim 2, used “omics” 

datasets to uncover a key regulatory network regulated by DNA methylation that had 

never before been studied in the context of atherosclerosis. 

To discover genes that are important in EC biology and regulated by DNA 

methylation, we performed detailed examination of the methylome and transcriptome 

data described in Aim 2. To determine the mechanisms by which 5Aza inhibited 

atherosclerosis in vivo and EC inflammation in vitro (as described in Aim 1), we tested 

the specific hypothesis that d-flow induces hypermethylation of anti-atherogenic EC 

genes at their promoter thereby silencing their expression, and that 5Aza treatment 

prevents this hypermethylation, leading to prevention of atherosclerosis. We found 11 

genes that were strongly hypermethylated and had suppressed expression in d-flow, and 

these were reversed by treatment with 5Aza. These included HoxA5, Tmem184b, 

Adamtsl5, Klf3, Cmkrl1, Pkp4, Acvrl1, Dok4, Spry2, Zfp46, and F2rl1. We also found 

that genes containing promoter cyclic AMP response elements (CRE) are enriched in this 

subset of promoter hypermethylated, d-flow suppressed genes. In addition to HoxA5, we 

found that the entire family of Hox genes, including the co-localized mir10 family, had 

strong flow-dependent methylation changes in the same manner as described for the 11 

genes. We further examined the role of several novel genes, including HoxA5 and Klf3, 

in EC biology using knockdown combined with EC inflammation assays. The findings 
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described in Aim 3 uncover the importance of DNMT-dependent mechanosensitive gene 

regulation by promoter methylation in EC function and highlight novel EC genes as that 

may provide useful targets for future atherosclerosis therapies.  

The work presented here has resulted in new knowledge about the epigenetic EC 

shear response, details the previously unstudied EC methylome, and implicates specific 

loci within the genome for additional studies on their role in EC biology and 

atherosclerosis. This work provides a foundation for future studies to develop more 

targeted therapeutic strategies for CVD. 
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CHAPTER 1 INTRODUCTION 

Clinical Significance of Atherosclerosis  

Atherosclerosis is the major cause of cardiovascular disease, including coronary 

artery disease, coronary microvascular disease, carotid artery disease, peripheral arterial 

disease, and chronic kidney disease1. Coronary artery disease is the number one cause of 

death in the US1,2. In addition to acute symptoms caused by atherosclerosis, a number of 

associated chronic pathologies also burden the healthcare system, including angina (chest 

pain), heart failure (reduced blood flow from the heart due to a weakening of the muscle), 

and arrhythmias (loss of rhythm of the heartbeat). While there are several known risk 

factors and behaviors that increase the likelihood of developing atherosclerosis, the 

underlying cause of the disease remains unknown 4. 

Atherosclerosis, Hemodynamics, and Endothelial Gene Expression 

Atherosclerosis is an inflammatory disease characterized by plaque accumulation 

on the arterial walls18. Endothelial cells (ECs) lining the inner wall of the blood vessels 

become a dysfunctional, permeable barrier to low density lipoprotein and immune cell 

infiltration and lose proper nitric oxide regulation to control vessel dilation.19 

Atherosclerotic plaque rupture (thrombosis and embolism) blocks blood flow and oxygen 

delivery to tissues thereby causing a heart attack or stroke.3 

Blood flow generates shear stress on the vascular walls. Unidirectional, laminar 

shear stress (LS) is crucial for normal vascular function, whereas low, disturbed flow (d-

flow), and oscillatory shear stress (OS) causes vascular dysfunction and disease.5-9 ECs 

have dramatically altered gene expression patterns when exposed to disturbed versus 

unidirectional flow.10-15 Atherosclerosis preferentially develops in areas of d-flow, where 
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the dysfunctional EC phenotype initiates and perpetuates plaque accumulation.20 D-flow-

induced genes are mainly involved in apoptosis, inflammation, angiogenesis, and smooth 

muscle cell proliferation. 

High throughput genome-wide microarray studies have generated clear evidence 

of the endothelial cells’ keen ability to sense and convert mechanical stimuli into 

biochemical signaling responses.6,8,21-23 Endothelial cells have mechanoreceptors that 

sense regions of d-flow and initiate a complex cascade of inflammatory events that 

results in global gene expression changes, endothelial dysfunction, and plaque buildup on 

the vessel wall.24 Numerous key regulatory pathways as well as novel mechanosensitive 

genes and functional gene clusters have been illuminated from these high throughput 

studies.25,26 The data continues to support the working hypothesis that laminar, 

unidirectional flow upregulates “atheroprotective” genes and downregulates “pro-

atherogenic” genes while disturbed, reversing, or stagnant flow results in the opposite 

phenomenon of enhancing pro-atherogenic genes and suppressing atheroprotective genes. 

However, the mechanism by which disturbed flow causes changes in EC gene expression 

is unknown.  

The discovery of master regulators that control a large network of genes is of high 

interest to vascular biologists because such biomolecules would serve as excellent 

therapeutic targets for disease treatment and prevention. Potentially important master 

regulators include epigenetic modifiers and transcription factors that participate in pre-

transcriptional regulation, microRNAs involved in pre-translational regulation of protein 

expression, and post-translational modifiers. Epigenetic modifications such as DNA 

methylation, histone modifications, and chromatin remodeling complexes, alter the 
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genomic DNA structure and accessibility.27 Transcription factors are recruited to specific 

regions of a gene promoter to form a transcriptional complex that assists RNA 

polymerase to bind and transcribe the gene to messenger RNA (mRNA). MicroRNAs 

have a complementary sequence to specific mRNAs and can block their translation or 

cause their degradation. Once mRNA has been successfully translated into protein, post-

translational modifications control their activity and stability. Putative key microRNAs 

(miR21, miR712, miR10a) and epigenetic chromosome structural organizers (HDACs, 

DNA-binding proteins) are currently the subject of extensive research to determine their 

role in large-scale gene network regulation.   

Epigenetics and DNA Methylation 

Epigenetics refers to the modification of genetic information in a sequence-

independent manner. Genomic DNA in an open, relaxed conformation is referred to as 

euchromatin and is associated with acetylated histones and unmethylated DNA. Genes in 

euchromatin are usually transcriptionally active. On the other hand, heterochromatin is 

condensed and is associated with repressive marks such as trimethylated-histone 3 lysine 

9 (H3K9), trimethylated-histone 3 lysine 27 (H3K27), and DNA methylation. 

Heterochromatin generally contains repeat elements and transcriptionally silent genes, 

and its compaction predominantly occurs during development and differentiation.28-32 

Shear stress has been found to mediate chromatin remodeling and histone modifications 

and this is thought to play a role in shear-induced gene expression changes.33,34 
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Figure 1.1: DNA methylation is placed by DNA methyltransferases at the fifth 
carbon of the cytosine ring. 

DNA methylation is the most stable epigenetic modification and involves the 

addition of a methyl group to the 5’ carbon of a cytosine base pair, which is then known 

as 5-methylcytosine (5mC) (Figure 1.1). This modification occurs most frequently in the 

context of a CpG (or CG) dinucleotide.35,36 CpG islands are dense regions of CG sites 

with a higher than expected CG content (generally defined as > 50% with an observed vs. 

expected ratio of >0.6, over a distance of at least 200 base pairs) and are normally 

unmethylated.37 Approximately 40% of human genes are associated with CpG islands.38-

41 Repetitive elements such as Alu, Line1, and B1 elements, and imprinted loci, are 

generally highly methylated.39 CG sites are otherwise sparse throughout the genome due 

to a high rate of C to T mutation caused by spontaneous deamination of methylated 

cytosine, and only functionally important CG sites are thought to be evolutionarily 

protected from this mutation.42-45 

DNA Methylation in disease  

DNA methylation is a regulatory mechanism of gene expression known to play a 

key role in cancer development, particularly in the silencing of tumor suppressor genes 

via aberrant hypermethylation, but its role in many other diseases remains poorly 

understood. Atherosclerosis is characterized by endothelial dysfunction, including 
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hyperproliferation, migration, and inflammation, which are phenotypes also shared by 

cancer cells.  

Recently, DNA methylation has been implicated as a novel risk factor for 

atherosclerosis in smooth muscle cells (SMCs).46-50 Three genes are known to be 

methylated at the promoter in atherosclerotic SMCs: estrogen receptors ER-α, ER-β, and 

fibroblast growth factor 2 (FGF2).51,52,53 Loss of estrogen receptor expression in SMCs 

causes a switch from the quiescent to the proliferative state. Hypermethylation of the ER-

α promoter as well as high plasma homocysteine levels were found in atherosclerosis 

patients.51,54 Age-related promoter hypermethylation of genes such as c-fos, c-myc, 

DBCCR1, E-cadherin, HIC1, IGF2, MYOD1, N33, PAX6, P15, and versican have been 

reported.55 5-methylcytosine (5mC) has been shown to be elevated in the intima of ApoE-

/- mice fed western diet, and high 5mC levels are linked LDLR and p53 mutation in 

vascular cells.45,50 15-lipoxygenase, a gene implicated in oxidative modification of LDL, 

is regulated by DNA methylation.56  

Aberrant DNA methylation is a well-known phenomenon in many cancers, and 

hypomethylating drugs that inhibit DNA methyltransferases have proven to be promising 

treatment options. 5Aza-2’-deoxycytidine (5Aza) is a well-studied DNMT1 preferential 

inhibitor.57-62 5Aza is a nucleoside analog that works by trapping DNMT1 in a covalent 

complex with DNA, resulting in DNMT1 degradation. 5Aza is commercially known as 

Decitabine and is used as a chemotherapeutic agent for cancers, more specifically, acute 

myeloid leukemia and myelodysplastic syndromes. Decitabine is thought to work by 

causing demethylation of oncogenes.58-62 However, it is somewhat cytotoxic to bone 

marrow cells and this limits its therapeutic capacity. Current research explores the use of 
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antisense RNA therapy and specific chemical inhibitors to target DNMT1 more 

effectively. 
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CHAPTER 2 SPECIFIC AIMS 
 

Significance and Impact 

Prior to the conception of this project there were no studies on the regulation of 

epigenetics in endothelial cells (ECs) by mechanical forces generated by blood flow, and 

further no studies on the role of DNA methyltransferases (DNMTs) in ECs. Early reports 

of shear stress effects on epigenetics described novel pathways by which shear stress 

mediates chromatin remodeling and histone modifications in cultured endothelial cells 

63,64. However, until very recently, detailed endothelial cell epigenetic responses to shear 

stress were unknown. During the culmination of this thesis project, several research 

groups in vascular mechanobiology independently converged on the seminal finding that 

DNA methyltransferases are shear responsive proteins that regulate flow-mediated 

endothelial gene expression programs via DNA methylation 16,65,66. These studies point to 

the opportune timing of our studies, and highlight the pertinence and novelty of this work 

to the field of vascular mechanobiology and disease. 

This study was the first to examine the global effects of blocking DNA 

methylation pathways using DNMT inhibition in ECs. 5Aza-2’deoxycytidine (5Aza) and 

short interfering RNA (siRNA) treatments allowed us to directly observe the functional 

consequence of DNMT1 inhibition on global EC DNA methylation patterns and EC 

biology. Results from our in vitro studies predicated the question of whether there would 

be a functional effect of DNMT1 inhibition on disease outcome. We used two in vivo 

models of acute d-flow-induced and chronic diet-induced atherosclerosis as a robust 

system to analyze DNMT inhibition effects on disease development. The question of 
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whether DNMT1 inhibition affects EC inflammation in vitro and atherosclerotic plaque 

development in vivo has never been addressed before this point. 

Many of the discoveries that are detailed in this dissertation were also published 

in the Journal of Clinical Investigation, and our work garnered international recognition 

through presentations at international conferences and coverage by various media outlets 

including the American Heart Association Science News 16. This work provides a 

foundation for future studies to develop more targeted therapeutic strategies for CVD. 

Rationale 

Data from our lab’s previous high throughput gene expression studies of 

endothelial cells in the in vivo mouse carotid artery using mRNA microarrays implicated 

DNA methyltransferase 1 as a potentially functionally important mechanosensitive gene 

17. DNA Methyltransferase 1 (DNMT1) was highlighted in the pool of ~600 shear-

sensitive endothelial cell (EC) genes discovered by microarray in the mouse partial 

carotid ligation model due to its flow-sensitivity (~2.4 fold expression increase in the 48 

hour disturbed flow LCA as compared with the control RCA) and its functional 

importance in development and disease. The other catalytically active DNA 

methyltransferases, DNMT3a, DNMT3b, and DNMT3L, were not found to be strongly 

flow-responsive in this model.  

Preliminary results established significant DNMT1 upregulation in ECs under 

oscillatory shear (OS) in vitro and in disturbed flow (d-flow) in vivo. Therefore it was 

hypothesized that DNMT1 may have an important role in the EC shear response, which is 

the gateway to d-flow-induced atherosclerosis development. The effect of DNMT1 

inhibition by 5Aza was tested on OS-induced EC inflammation, which is a major 
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hallmark of atherosclerosis, and on in vivo plaque development in atheroprone mice. 

Based on results demonstrating that DNMT1 inhibition reduces inflammatory signaling 

in ECs in vitro and plaque development in vivo, combined with the fact that the 

functional role of DNMT1 is to methylate DNA, the most probable and relevant 

downstream effect of DNMT1 upregulation is an alteration of DNA methylation. 

Resolving the EC methylome and transcriptome under disturbed versus unidirectional 

flow conditions enabled us to discover methylation and gene expression changes due to 

d-flow exposure. To implicate DNMT1 specifically in d-flow-induced methylation 

changes, the effect of DNMT1 inhibition on ECs under flow was also tested. We 

expected that DNMT1 inhibition would prevent the d-flow-induced methylation changes 

if DNMT1 is indeed the key player in establishing those methylation changes. Based on 

our discovery that DNMT1 is increased in d-flow, we hypothesized that d-flow leads to 

site-specific methylation changes that cause loss of anti-atherosclerotic gene expression 

by DNA methylation at the promoter. We further expected that DNMT1 inhibition by 

5Aza would rescue these genes and prevent the pro-atherosclerotic phenotype. 

Using a systems biology approach, the functional consequences of d-flow-induced 

DNA methylation and gene expression changes were explored to implicate novel genes 

that were previously unstudied in the context of the endothelial flow response and 

atherosclerosis. Discovery and validation of gene-specific methylation changes that cause 

gene expression changes produced a set of genes for further analysis. A subset of these 

genes were discovered by gene ontology analysis as transcription factors, and they were 

studied based their potential functional role as key network regulators. The effect of 

blocking d-flow-induced methylation changes in these genes on EC inflammation, which 
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is a hallmark of atherosclerosis, was explored. The work presented here has resulted in 

new knowledge about the epigenetic EC shear response, details the previously unstudied 

endothelial cell methylome, and implicates specific loci within the genome for additional 

studies on their role in EC biology and atherosclerosis.  

Innovation 

The finding that atherosclerosis is induced by disturbed blood flow (d-flow) is 

relatively recent, and is supported by the fact that global gene expression changes occur 

in ECs exposed to d-flow that cause a dysfunctional, pro-inflammatory EC phenotype. 

However, the mechanism by which these global gene expression changes take place is 

unknown, and the possibility of epigenetic gene regulation remained unexplored prior to 

this study. 

Major advancements in methylomics were established with the advent of new 

technologies to resolve genome-level methylation at the nucleotide scale. The Human 

Epigenome Project and the NIH Roadmap Epigenomics Mapping Consortium are part of 

a major undertaking across multiple research facilities to create high-resolution DNA 

methylation and other epigenomic maps in various cell types.67 While progress has been 

made, there is a clear lack of methylome data for ECs. One dataset using the Illumina 

450k methylation array in static cultured HUVECs is publicly available, but there are no 

in vivo EC datasets, and furthermore none under varying flow and treatment conditions. 

The study described herein was the first to tackle this missing puzzle piece, with six new 

methylome datasets (ECs exposed to d-flow for either 2 or 7 days in vivo, and also with 

DNMT1 inhibition by 5Aza) that are critical for both cardiovascular and epigenomic 

research advancements. 
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A major challenge in the “omics” field is data mining to produce intelligible 

results from vast arrays of uninterpretable raw data. Data analysis can often act as a 

bottleneck in the pipeline from benchtop experiments to elucidation of therapeutic 

candidates. The data analysis performed for this project produced specific candidate 

genes as targets of d-flow-induced methylation. The systematic a posteriori search for 

global trends combined with the a priori pattern filtering creates a robust methodology to 

analyze methylomics on the genome and single gene, and even single nucleotide, scale. 

Project Objective  

While we know that laminar, unidirectional flow upregulates “atheroprotective” 

genes and downregulates “pro-atherogenic” genes while disturbed, reversing, or stagnant 

flow results in the opposite phenomenon, the mechanism by which flow controls EC gene 

expression is unknown. The goal of this project was to determine how the DNA 

methylome responds to flow, causes altered gene expression, and regulates 

atherosclerosis development. 

Overall Hypothesis 

Disturbed flow increases DNA Methyltransferase 1 (DNMT1) expression in 

endothelial cells. This in turn causes a shift in the EC methylome and transcriptome 

towards a pro-inflammatory, pro-atherosclerotic gene expression program which leads to 

atherosclerosis development. More specifically, we hypothesize that DNMT1 

overexpression induces site-specific DNA hypermethylation in the promoter of key gene 

network regulators, which suppresses their expression and changes the endothelial 

transcriptome to a pro-atherosclerotic state. 
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Specific Aim 1: Elucidate the role of DNA Methyltransferase 1 in endothelial cell 

function  

Data from our lab’s previous in vivo mouse carotid artery mRNA microarrays 

implicated DNMT1 as a potentially functionally important mechanosensitive gene in EC 

biology. The mRNA array showed that DNMT1 expression was ~2.4-fold higher in the 

LCA exposed to d-flow for 48h following the partial ligation than in the contralateral 

RCA exposed to s-flow 17. In Chapter 3, we show that DNMT1 is upregulated by d-flow 

at the transcript and protein level in vivo and in vitro. DNMT1 inhibition using the 

chemical inhibitor 5-Aza-2’deoxycytdine (5Aza) or DNMT1 siRNA was done in vitro 

prior to shear in HUVECs, and 5Aza was used in mouse models of atherosclerosis to 

determine the functional outcome of blocking DNMT1 overexpression in d-flow. We 

show that DNMT1 inhibition by 5Aza inhibits inflammation and global methylation in 

ECs in vitro and plaque development in both acute and chronic murine models of 

disturbed flow-induced atherosclerosis in vivo. Preliminary studies exploring the 

mechanism of upstream DNMT1 regulation point to the mir29 family as potential 

mechanosensitive regulators of this pathway. This work establishes the importance of 

DNMT1 in EC biology and atherosclerosis. 

Specific Aim 2: Examine the DNA methylation-dependent endothelial gene 

expression response to flow 

Specific aim 2 was designed to determine the mechanistic importance of DNMT1 

overexpression by d-flow and also the mechanism of action of DNMT inhibition by 5Aza 

in disturbed-flow-exposed endothelium. Since DNMT1 is known to methylate genomic 

DNA and DNA methylation is a regulator of gene expression, we designed two parallel 
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“omics” studies to examine the effects of both disturbed flow and DNMT inhibition on 

the endothelial cell DNA methylome and transcriptome in vivo. We carried out the 

reduced representation bisulfite sequencing (RRBS) study using endothelial-enriched 

genomic DNA (gDNA) obtained from the RCA and LCA of partially ligated mice at two 

different time points of two days and one week post-ligation. To further determine 

whether the flow-dependent DNA methylation changes were regulated in a DNMT-

dependent manner, mice treated with 5Aza were compared to a saline vehicle control. 

Moreover, to determine which mechanosensitive genes have transcriptional 

dysregulation, potentially by DNA hypermethylation, we carried out a concomitant gene 

transcript microarray study using endothelial-enriched RNA obtained from the LCA and 

RCA of partially-ligated mice treated with either saline (RCA vs. LCA) or 5Aza (Aza-

RCA vs. Aza-LCA). From these studies we found that DNMT inhibition by 5Aza rescues 

global gene expression in the d-flow-exposed LCA to a healthy state. While genome-

wide DNA methylation and specific functional genomic elements did not have 

dramatically changed methylation under these conditions, we followed a specific 

hypothesis and discovered a subset of genes that have d-flow-induced promoter 

hypermethylation correlating with gene suppression, both of which were 5Aza-reversible. 

Based on systems biology and further bioinformatics analysis, we found that gene 

promoters containing cyclic AMP Response Elements (CRE) are preferentially 

demethylated at their CG sites as compared to other promoter CG sites in the RCA. 

Additionally, these promoter CRE CG sites are specifically hypermethylated by d-flow. 

We further discovered that, on the genome scale, CRE CG hypermethylation corresponds 

to decreased gene expression. These studies, described in detail in Chapter 4, used 
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“omics” datasets to uncover a key regulatory network regulated by DNA methylation that 

can provide a basis for future studies on novel therapeutic targets for atherosclerosis. 

Specific Aim 3: Discover and examine master regulators of endothelial function that 

are controlled by DNA methylation 

To discover genes that are important in endothelial biology and regulated by DNA 

methylation, we performed detailed examination of the methylome and transcriptome 

data described in Chapter 4. To determine the mechanisms by which 5Aza inhibited 

atherosclerosis in vivo and endothelial cell inflammation in vitro (as described in Chapter 

3), we tested the specific hypothesis that d-flow induces hypermethylation of anti-

atherogenic endothelial genes at their promoter thereby silencing their expression, and 

that 5Aza treatment prevents this hypermethylation, leading to prevention of 

atherosclerosis. We found 11 genes that were strongly hypermethylated and had 

suppressed expression in d-flow, and these were reversed by treatment with 5Aza. These 

included HoxA5, Tmem184b, Adamtsl5, Klf3, Cmkrl1, Pkp4, Acvrl1, Dok4, Spry2, Zfp46, 

and F2rl1. We also found that genes containing promoter cyclic AMP response elements 

(CRE) are enriched in this subset of promoter hypermethylated, d-flow suppressed genes. 

In addition to HoxA5, we found that the entire family of Hox genes, including the co-

localized mir10 family, had strong flow-dependent methylation changes in the same 

manner as described for the 11 genes. We further examined the role of several novel 

genes, including HoxA5 and Klf3, in endothelial biology using knockdown combined 

with endothelial inflammation assays. The findings described in Chapter 5 uncover the 

importance of DNMT-dependent mechanosensitive gene regulation by promoter 
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methylation in endothelial cell function and highlight novel endothelial genes as potential 

therapeutic targets for atherosclerosis.  

Study Approval 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee at Emory University. 
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CHAPTER 3 THE ROLE OF DNA METHYLTRANSFERASE 1 

IN ENDOTHELIAL CELL FUNCTION  

Summary  

Data from our lab’s previous in vivo mouse carotid artery mRNA microarrays 

implicated the DNA methyltransferases as potentially functionally important 

mechanosensitive genes. The mRNA array showed that DNMT1 expression was ~2.4-

fold higher in the LCA exposed to d-flow for 48h following the partial ligation than in the 

contralateral RCA exposed to s-flow17. D-flow-induced DNMT1 upregulation was 

validated at the transcript and protein level in vivo and in vitro. DNMT1 inhibition using 

the chemical inhibitor 5-Aza-2’deoxycytdine or DNMT1 siRNA was done in vitro prior 

to shear in HUVECs, and 5Aza was used in chronic and acute models of atherosclerosis 

to determine the functional outcome of blocking DNMT1 overexpression in d-flow. A 

major portion of Chapter 3 was published as follows: Dunn, J., Qiu, H., Kim, S., Jjingo, 

D., Hoffman, R., Kim, C. W., Jang, I., Son, D. J., Kim, D., Pan, C., Fan, Y., Jordan, I. K. 

Jo, H. Flow-dependent epigenetic DNA methylation regulates endothelial gene 

expression and atherosclerosis. J Clin Invest 124, 3187-319916. Here, we demonstrated 

that disturbed, oscillatory shear stress induces DNMT1 overexpression at the transcript 

and protein level in vivo and in vitro and that DNMT1 inhibition by 5Aza inhibits 

inflammation and global methylation in ECs in vitro, and plaque development in both 

acute and chronic murine models of disturbed flow-induced atherosclerosis in vivo. 

Preliminary studies exploring the mechanism of upstream DNMT1 regulation point to the 

mir29 family as a potential mechanosensitive regulator of this pathway. This work 

establishes the importance of DNMT1 in EC biology and atherosclerosis. 
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Introduction 

The Role of Fluid Mechanics in Endothelial Cell Gene Expression, the Endothelial 

Response to Blood Flow, and Atherosclerosis Development 

Endothelial cells that line the blood vessel intima contain mechanoreceptors that 

sense regions of disturbed flow and initiate a complex cascade of inflammatory events 

that results in endothelial dysfunction and plaque buildup on the vessel wall.24 Global 

gene expression in endothelial cells is altered, and newly expressed genes are involved in 

apoptosis, inflammation, angiogenesis, and smooth muscle cell proliferation.  

Mechanosensitive Endothelial Cell Genes 

Traditionally, gene expression studies conducted in vascular tissue were limited to 

single gene analyses of mechanical responsiveness and functional role in regulating cell 

shape and behavior with regard to vascular homeostasis and disease development.68,69 

Model systems engineered to study the effect of fluid shear stress on endothelial cells 

included shear-exerting bioreactors (e.g. cone and plate viscometer, parallel plate 

perfusion flow chamber)22,70,71 for in vitro studies and porcine, murine, and canine 

models for in vivo studies. While bioreactor systems offered the advantage of precise 

control over flow conditions by bioreactor construction specifications, fluid composition, 

and environmental conditions, and allowed freedom to study human cells, they lacked 

several important factors that exist in the in vivo setting such as mechanical cell-substrate 

interactions, crosstalk with local and circulating cells and molecules, and variable 

rheologic properties.  
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In the early 1990s the idea of single gene analysis was advanced by the discovery 

of shear stress response elements (SSREs), or common cis-acting elements of gene 

promoters that are regulated by a single shear-controlled transcription factor. SSREs 

enable co-regulation of a host of genes under specific environmental conditions that 

activate their common transcription factor. Resnick et al. discovered the first SSRE 

common to the key signaling molecules platelet-derived growth factor beta (PDGF-B), 

tissue plasminogen activator, intercellular adhesion molecule 1 (ICAM1), and 

transforming growth factor beta 1 (TGFB1) that are all induced by laminar shear 

conditions.72 SSREs have also been identified in other key genes such as Vascular 

Endothelial Growth Factor (VEGFR) and endothelial nitric oxide synthase (eNOS) and 

there are likely many SSREs that remain to be discovered.14,73 

Genome-Wide Analysis and Discovery of Mechanosensitive Signaling Pathways  

Because in vitro environments cannot fully recapitulate the effects of shear stress 

on the vascular endothelium in vivo, microarray studies evolved to in vivo settings to 

reveal the pathophysiological relevance of gene expression profiles in vascular 

endothelium exposed to specific flow conditions. Though there has been progress in the 

characterization of endogenous flow profiles in vivo,9 the necessity for more detailed 

studies of gene function in vivo begot the development of the mouse partial carotid 

ligation model by our lab.74 In this model, disturbed flow is induced in the left common 

carotid artery by ligation while the right common carotid artery remains untouched as an 

internal control. Our lab also developed a novel endothelial mRNA and microRNA 

collection technique that enabled the use of microarray technology to study global gene 

expression changes in mouse endothelium exposed to disturbed flow in an in vivo setting. 
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The dataset generated findings of 523 mechanosensitive genes changed within two days 

of disturbed flow exposure, including numerous genes previously undescribed in the 

context of the cardiovascular system.17  

High throughput genome-wide microarray studies have demonstrated that 

endothelial cells respond to different shear stresses by altering their transcriptional 

networks.6,8,21-23 Through these experiments, numerous key shear sensitive regulatory 

pathways as well as novel mechanosensitive genes and functional gene clusters have been 

illuminated and studied in great detail based on their role in endothelial cell homeostasis 

and disease development.21,25,26  Specific intracellular signaling pathways that become 

prevalent under low/oscillatory, atheroprone shear stress are juxtaposed with pathways 

that dominate under high, atheroprotective, laminar shear areas, cyclic stretch, and 

appropriate hydrostatic pressure (Figure 3.1).11 A host of mechanosensitive, 

atheroprotective genes that are highly expressed in laminar, unidirectional flow 

conditions have been uncovered. This includes eNOS, the gene responsible for nitric 

oxide production and maintenance of vascular tone, and several other genes involved in 

cell survival that have anti-thrombotic, anti-inflammatory, and anti-oxidant properties 

such as the Kruppel-like factor family (namely Klf2 and Klf4), and Superoxide 

Dismutases (Mn-SOD, EC-SOD).75 Additional mechanosensitive genes involved in 

immune response activation (MCP-1,23,76 VCAM-1, ICAM-177, NKFB12)78, reactive 

oxygen species production (NADPH Oxidases), and extracellular matrix reorganization 

causing vascular remodeling (TIMP-3, MMP-1) are found to be pro-atherogenic genes 

whose expression is suppressed under unidirectional laminar flow conditions and 

overexpressed under deleterious disturbed flow conditions. Many mechanosensitive cell 
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cycle regulators involved in endothelial cell homeostasis, including p53, GADD45, p215, 

ERK, play a key role in growth and proliferation suppression or activation.  

One area of special interest lies in the discovery of master regulators that control a 

large network of genes (Figure 3.2). These biomolecules would serve as excellent 

therapeutic targets for disease studies. Potentially important master regulators include 

epigenetic modifiers and transcription factors that participate in pre-transcriptional 

regulation, microRNAs involved in pre-translational regulation of protein expression, and 

post-translational modifiers such as kinases. Epigenetic modifications such as DNA 

methylation, histone modifications, and chromatin remodeling, alter the genomic DNA 

structure and accessibility. Transcription factors are proteins recruited to specific regions 

of a gene promoter to form a transcriptional complex that assists RNA polymerase to 

bind and transcribe the gene to messenger RNA (mRNA). MicroRNAs have a 

complementary sequence to specific mRNAs and can block their translation or cause 

their degradation. Once the mRNA has been successfully translated into protein, post-

translational modifications control their activity and stability. For example, kinases can 

activate or deactivate a protein by phosphorylation, and the post-translational modifier 

ubiquitin may ubiquitinylate a protein to target it for destruction by the proteasome. 

Putative key microRNAs (miR21, miR712, miR10a79) and epigenetic chromosome 

structural organizers (HDACs, DNA-binding proteins) are currently the subject of 

extensive research to determine their role in large-scale gene network regulation.  

Mechanoreceptors Transduce Mechanical Forces into Biochemical Signaling in 

Endothelial Cells 

Mechanoreceptors recognize blood flow patterns and transduce signals within 
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endothelial cells, which respond to unhealthy, disturbed flow by initiating plaque buildup 

in the vessel walls (known as atherosclerosis, a major component of cardiovascular 

disease). Several endothelial cell mechanoreceptors have been identified, including ion 

channels, cytoskeleton, tyrosine kinase receptors, caveolae, G proteins, and cell-matrix 

and cell-cell junction molecules such as integrins, platelet endothelial cell adhesion 

molecule- 1 (PECAM-1) and adherens junctions.80,81 However, the mechanisms by which 

these mechanoreceptors recognize disturbed flow and transduce a signal that results in 

altered global gene expression in endothelial cells is largely unknown. Possible 

mechanisms involved in altered transcriptional activity include changes in transcription 

factor activity and epigenetic changes.  

A subset of the mechanosensitive genes mentioned previously have been found to 

be vital for the endothelial cell’s ability to sense mechanical stimuli. When their 

expression or normal activity is interrupted, cells lose phenotypic or gene expression 

changes associated with a specific mechanical stimulus, for example the transformation 

from a polygonal shape to align with the direction of flow under laminar shear stress 

conditions 82. The intact mechanosensory complex at endothelial cell junctions consisting 

of PECAM-1, VECadherin, and VEGFR2, is crucial for the endothelial cell to be able to 

activate anti-atherosclerotic gene programs in response to laminar flow81. Several other 

important mechanotransduction pathways begin at the cell membrane, including integrins 

(FAK), cell membrane proteins [RTKs (PDGFRa72, EGFR), GPCRs], ion channels 

(Ca2+), and intercellular junctions, and travel biochemically through the cytosol or 

mechanically via the cytoskeleton to ultimately affect gene expression in the nucleus.8,83 
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Figure 3.1: Mechanotransduction signaling pathways in endothelial cells in response 
to either (A) laminar or (B) oscillatory shear stress stimuli.  Laminar shear stress 
stabilizes a healthy, anti-inflammatory state in endothelial cells that results in 
cytoskeletal remodeling and endothelial cell alignment in the direction of flow, as 
well as increased nitric oxide production and suppression of inflammatory cell 
adhesion molecules. Conversely, disturbed flow or oscillatory shear stress induces 
an inflammatory and thrombotic state characterized by high expression of cell 
adhesion molecules and production of inflammatory cytokines, high oxidative stress, 
lack of cell alignment with flow, and a leaky endothelial cell barrier that allows 
infiltration of smooth muscle cells and immunomodulatory cell types84,85 . 

 

Figure 3.2: Mechanosensory pathways utilize surface mechanoreceptors to induced 
biochemical cell signaling events.  Mechanoreceptors include ion channels (K+, 
Ca2+, Na+, Cl-), receptor tyrosine kinases, G-protein coupled receptors, etc., cell-
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cell and cell-matrix adhesion complexes (PECAM1/VE-Cadherin/VEGFR2 
complex, Focal Adhesion Kinases, etc.), the glycocalyx, and cytoskeletal elements 
that transduce signals and result in downstream signal amplification via master 
regulators such as kinase cascades and transcription factor networks. These 
signaling events alter the endothelial cell phenotype and behavior in response to 
extracellular biomechanical stimuli 7,84.  

DNA Methyltransferases 

DNA methyltransferases (DNMTs) catalyze the addition of the methyl group to 

cytosine. DNMT1 is thought to preferentially methylate hemimethylated DNA, meaning 

that the complementary strand of a CG dinucleotide often carries the same methylation 

markings. Although DNMT1 is classically referred to as a maintenance methylase, it also 

has de novo methylation capabilities.86,87 Both DNMT1 overexpression and DNMT1 

deficiency are embryonic lethal, and DNMT1 deletion causes genome-wide 

hypomethylation while DNMT1 overexpression causes genome-wide 

hypermethylation.88-91  DNMT3a and DNMT3b are classically referred to as de novo 

methyltransferases that preferentially add methyl groups to fully unmethylated DNA. 

DNMT3a and DNMT3b establish global DNA methylation patterns during 

embryogenesis and gametogenesis.92 

microRNAs 

MicroRNAs (miRs) are potent regulators of gene expression that act post-

transcriptionally to repress a gene by blocking mRNA translation or causing its 

degradation, and there are several miRs that are known to target DNMTs in cancer. 

Additionally, flow is known to regulate several miRs93-101.  

DNMT1 is verified as a direct target gene for miR-148a and miR-152, and the 

miR29 family.102-104 The miR29 family is known to regulate the methylation status of 
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specific genes via regulation of DNMT1, DNMT3a, and DNMT3b, and it is known to be 

dysregulated in several cancers.105,106 The transcription factor Myc, which is 

overexpressed in several cancers, suppresses mir29c.107 Chen et al. showed that oxidized 

low-density lipoprotein upregulates mir29b expression, which downregulates DNMT3b 

and decreases MMP2/9 DNA methylation levels, leading to increased primary human 

aortic smooth muscle cell migration.108 This was implicated as a novel mechanism for 

cardiovascular disease. Additional studies support the epigenetic regulation of MMP2 

and MMP9 in carcinogenesis109,110. Viral infection induces miR29b, which decreases 

DNMT activity111. This very interestingly induces COX2 expression via demethylation of 

its promoter CRE, which also supports our interest in the mechanisms of DNMT-

regulated global gene expression by promoter CRE methylation that is explored in 

Chapter 4.111 Further, shear stress is known to upregulate COX2 expression via increased 

promoter CRE binding by AP1 and C/EBPβ in osteocytes112. Taken together, these 

findings suggest that the mir29 family contains potential DNMT1 regulators that may be 

useful in controlling downstream flow-controlled DNA methylation pathways in 

endothelial cells.  

Methods 

Techniques to Analyze Shear Stress Effects on Endothelial Cells 

Partial Carotid Ligation in ApoE or C57Bl6 mice 

8-week-old C57BL/6 or ApoE-/- mice (Jackson Laboratories) were used for all 

animal studies according to the approved Institutional Animal Care and Use Committee 

protocol by Emory University. Mice were partially ligated under isofluorane anesthesia 

and the resultant disturbed flow conditions in the LCA were determined by ultrasound 
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measurements as described previously 113. Briefly, 3 out of 4 caudal branches of the LCA 

(left external carotid, internal carotid, and occipital artery) were ligated with 6-0 silk 

suture, while the superior thyroid artery was left intact (Figure 3.3). Mice were sacrificed 

by CO2 inhalation and were subsequently perfused with saline containing heparin for 5 

minutes Total carotid intimal RNA or genomic DNA was isolated by flushing the RCA 

and LCA with Qiazol or Buffer AL, respectively, by our method that we have 

demonstrated to be endothelial-enriched without any significant contamination of smooth 

muscle cells and leukocytes 17,101,113. 

 

Figure 3.3: A scheme of the partial carotid ligation mouse surgery model.  A) 
Location of sutures at the external carotid, internal carotid, and occipital arteries 
for partial ligation. B) Low and reversing flow in the LCA one day and one week 
post-ligation by ultrasound. C) Plaque accumulation in the LCA 4 weeks post-
ligation on a high fat diet. D) Carotid flushing for intimal RNA or gDNA114. 

In vitro systems: cell culture and shear stress systems  

Human Umbilical Vein Endothelial Cells (HUVEC, Lonza cc-2519) were 

maintained in M199 (Fisher MT10060CV) base culture medium containing 20% Fetal 

Bovine Serum (SH30071), 10% penicillin/streptomycin/fungizone (Gibco 15240-062), 

10% glutaMax (Mediatech, 25-005-cl), 10% endothelial cell growth serum, and 0.4% 

heparin (McKesson Medical 404867). In vitro shear stress was applied to passage 6 

HUVECs in 10cm culture plates for 24 hours using a cone and plate viscometer that 

exerts 15 dynes/cm2 of unidirectional flow (laminar shear stress, or LS conditions) and ± 
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5 dynes/cm2 of bidirectional flow (oscillatory shear stress, or OS) (Figure 3.4). The cell 

culture plates were secured in place at the bottom by a vacuum pump and the incubator 

was maintained at 5% CO2 and 37°C. Total RNA or genomic DNA was collected by 

scraping cells in Qiazol (Qiagen) or Buffer AL (Qiagen DNeasy Blood & Tissue Kit), 

respectively. 

 

Figure 3.4: In vitro Cone-Plate Shear System    (10 (LS) or ±5 (OS) dynes/ cm2 
exerted on EC monolayer) 

RNA Extraction from Cultured Endothelial cells or Mouse Carotid Artery for Gene 

Expression Analysis 

Microarray 

Using the mouse partial carotid ligation model and the Illumina Bead Chip DNA 

microarray containing 45,281 gene probes, our lab previously identified ~600 

“mechanosensitive” genes whose expression changes in ECs exposed to disturbed flow in 

the left carotid artery (LCA) as compared to unidirectional flow in the right carotid artery 

(RCA) for 12 and 48 hours (C57Bl6 mice; n=3 for each timepoint, each n contains 3 

pooled carotid samples).17 We have additional subsequent array data using the 

Affymetrix Mouse HT-MG-430 array platform for 12, 24, 48 hours and 2 weeks post-

ligation (C57Bl6 mice; n=5 for each timepoint, each n is one individual carotid sample).  
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qPCR 

Total carotid intimal RNA isolated by flushing the RCA and LCA with 150 ul 

Qiazol was purified by the Qiagen miREasy Kit and reverse-transcribed into cDNA using 

SuperScript III and random primers (Invitrogen). Total RNA was collected from HUVEC 

cultures in 700 ul of Qiazol and purified by the same method as above. QPCR for specific 

genes was performed using Brilliant II SYBR Green qPCR Master Mix (Stratagene) with 

custom designed primers (Table 3.1) on the ABI StepOne Plus Real-Time PCR System. 

Results were normalized to the 18S housekeeping gene and the fold change between 

siRNA-treated and negative control samples were determined using the ΔΔCt method 115. 

 

Table 3.1: Primers used for qPCR or bisulfite sequencing (BS-Seq).  

 

Immunohistochemistry and Oil-Red-O Staining on Mouse Carotid Arteries and Aortic 

Arch  

Frozen blocks containing the heart, aortic arch, and carotid arteries were prepared 

in TissueTek and stored at -80℃. Immunohistochemistry was performed on selected 

sections from specific intervals of the frozen blocks using the following antibodies: 5-

methylcytidine (Eurogentec, BY-MECY), DNMT1 (Santa Cruz sc-20701), DNMT3b 
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(Abcam ab2851), DNMT3a (Abcam ab23565), and CD45 (eBioscience 13-0454). 

Selected sections from specific intervals from the blocks were stained with Oil-Red-O by 

fixing the frozen tissues with 10% formalin for two minutes, rinsing twice with distilled 

water for five minutes, orbital shaking in 100% propanediol for ten minutes and 

incubation in 0.2% Oil Red-O solution for five minutes at 85℃. For hematoxylin 

staining, the previous method was followed by two rinses with distilled water, a 

hematoxylin dip for 30 seconds, two rinses with distilled water, one rinse with Scott’s 

water, two rinses with distilled water, and then mounting. Plaque size was quantified 

using ImageJ software.  

5-Aza-2-Deoxycytidine and siRNA treatment of HUVECs in vitro 

Optimal 5-Aza-2’-deoxycytidine (5Aza; Sigma A3656) treatment conditions were 

determined by a dose-curve using 0, 0.5, 1, 5, and 20 µM 5Aza for 5 days, and by 

duration curve of 5uM 5Aza for 0, 0.5, 1, 2, 3, 5, and 7 days. DNMT enzymatic activity 

and DNMT1 protein expression assays indicated the optimal dose of 5 µM. For shear 

studies, 5 µM 5Aza was treated for 5 days prior to in vitro shear, and the LS or OS 

conditions were applied for 24 additional hours.  
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Figure 3.5: 5-Aza-2’-deoxycytidine decreased DNMT1 protein expression, activity, 
and global DNA methylation in HUVECs a dose- and time-dependent manner.   (A) 
Western blot of DNMT1 protein expression in static HUVEC cells treated with 0, 
0.5, 1, 5, and 20 µM 5Aza for 5 days (right) or with 5 µM 5Aza for a duration of 0, 
0.5, 1, 2, 3, 5, or 7 days (left). (B) DNMT enzymatic activity in HUVEC cells treated 
with 0, 0.5, 1, 5, and 20 µM 5Aza for 5 days (right) or with 5 µM 5Aza for a duration 
of 0, 0.5, 1, 2, 3, 5, or 7 days (left). (C and D) DNMT enzymatic activity increases in 
HUVECs in OS conditions. This increase is blunted in a dose- and time-dependent 
manner by treatment with 5Aza.  

SiRNA was transfected using oligofectamine (Invitrogen 12252-011) with 100nM 

final concentration of siDNMT1 (Dharmacon RNAi ON-TARGET plus SMART pool) or 

100nM stealth RNAi negative control (medium GC content, Invitrogen 12935-112) in 

OptiMEM (Invitrogen 31985-088) for 6 hours followed by normal HUVEC media 

replacement. After 48 hours, shear stress (either LS or OS) was applied for an additional 

24 hours. SiRNA dose optimization was done in static HUVECs in doses of 25, 50, 75, 

100, 400nM of siRNA in a total volume of 0.5ml. After 6 hours of incubation with 

siRNA, media was replaced with standard HUVEC media, and RNA and protein were 

collected after 48 hours. 
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Figure 3.6: Dose (mRNA level) and time (protein level) curve optimization of 
DNMT1 siRNA.  (A) DNMT1 mRNA expression was measured by qPCR in static 
HUVEC cells treated with either 100nM or 200nM of either negative control siRNA 
or siRNA targeting DNMT1 for 48 hours. (B) Western blot of DNMT1 protein 
expression in static HUVEC cells treated with 100nM of either negative control 
siRNA or siRNA targeting DNMT1 for either 48 or 72 hours.  

Western Blot on Protein Extracts from HUVECs 

Western Blotting was performed by the standard method using antibodies for the 

following: DNMT1 (Santa Cruz sc-20701), DNMT3a (Abcam ab23565), DNMT3b 

(Abcam ab2851), and β-actin (Sigma A5316), and HoxA5 (Abcam ab82645). 

MspI/HpaII Restriction Enzyme Assay to Determine Global DNA Methylation Status In 

Vitro  

Genomic DNA was collected and purified by the DNeasy Blood and Tissue kit 

(Qiagen) from HUVECs treated with either 5µM 5Aza or vehicle control for 5 days. 

Either MspI or HpaII (ThermoSci ER0541) were reacted with the genomic DNA 

according to the recommended protocol for the restriction enzymes. The reaction 
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products were run on a 2.5% agarose gel stained with ethidium bromide alongside a 100 

bp ladder (NEB N3231L) and imaged under UV light. MspI and HpaII cut at the C/CGG 

recognition site. MspI cleaves regardless of the internal cytosine methylation status, 

while HpaII is blocked from cleavage by internal cytosine methylation. 

 

Figure 3.7: Results of the MspI/HpaII methylation restriction enzyme assay  show 
that global methylation decreases in static HUVECs treated with 5uM 5Aza for 5 
days. Lanes 5, 10, and 15 contain the molecular weight ladder (marked on the right 
of the figure). Lanes 1-4 and 6-9 are duplicates and lanes 11-14 are using either fully 
unmethylated or fully methylated DNA to show the effect of methylation on the 
restriction digest for the two enzymes. Lanes 2 and 6 contain genomic DNA from 
untreated HUVECs, and HpaII cleavage was blocked due to methylated cytosine. 
The band disappears in lane 4 and 9, when HpaII can cut the hypomethylated DNA 
from 5Aza-treated HUVECs.  

DNMT Activity Assay 

The DNMT enzymatic activity assay was performed according to the 

manufacturer’s protocol (Epigentek, P-3010). Briefly, nuclear extracts from HUVEC that 

underwent either LS or OS for 24 hours, with or without 5Aza pre-treatment (5uM for 5 
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days before shear), were incubated with the DNMT substrate (unmethylated cytosine) 

and an antibody binding and fluorometric assay was used to measure the ratio of 

methylated to unmethylated cytosine to determine overall DNMT enzymatic activity.  

Monocyte adhesion assay 

HUVECs were pre-treated with either 5Aza or siRNA and were subjected to 

either LS or OS for 24 hours. Separately, human peripheral blood mononuclear 

leukocytes (THP-1 cells) were cultured in serum-containing RPMI medium (Fisher 

MT10040CM) and were labeled in serum-free RPMI with 5µl/ml 2’7’-bis-(2-

carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF-AM; Molecular Probes B-1170) at 

37°C for 30 minutes. As a positive control, HUVECs were activated by 1 ng/ml TNFα in 

serum-free RPMI for 3 hours to induce monocyte adhesion. After shear, each 10cm plate 

of HUVECs was exposed to the labeled THP-1 cells at a concentration of 5 x 105 THP-1 

cells/ml (in a total of 6ml) for 30 minutes at 37°C. Non-adherent monocytes were washed 

away with HBSS (Fisher MT21023CV) and the bound monocytes were fixed with 4% 

paraformaldehyde for 5 minutes. Bound monocytes were imaged in 8 fields/plate via 

fluorescent and bright field microscopy and quantification was done using ImageJ. 

In vivo 5Aza Treatment Scheme 

Mice were treated by intraperitoneal injection at doses of 0.1, 0.2, or 0.4 

mg/kg/day of 5-Aza-2’-Deoxycytidine (5Aza; Sigma) daily for four weeks (the acute d-

flow-induced atherosclerosis model), or at 0.2 mg/kg/day for three months (the chronic 

diet-induced atherosclerosis model). Mouse weight was monitored weekly, and food and 

water intake and feces were monitored daily. 
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High Resolution Melting Curve Analysis to Quantify Global DNA Methylation In Vivo 

Global genomic DNA methylation as represented by genomic repeat element 

methylation was quantified by LINE1 and B1 high resolution melting curve assays 

(HRM) for each mouse in the RRBS and array studies to determine the effect of 5Aza 

treatment. HRM was done according to the protocol set by Newman et al. 116. Whole 

blood was collected by the submandibular technique one week after the start of 5Aza 

treatment. Genomic DNA was extracted from blood using the DNeasy Blood and Tissue 

kit (Qiagen) and genomic DNA was bisulfite converted using the Epitect Bisulfite 

Conversion kit (Qiagen). Bisulfite-converted genomic DNA was subjected to HRM using 

the F_unmeth_mLINE1 and R_unmeth_mLINE1, and the F_mod_unbiased_B1_Mm and 

R_mod_unbiased_B1_Mm primers from Newman et al. and normal qPCR methods as 

described above116.  

Statistical Analyses 

Statistical analyses were performed using Graph-Pad Prism 5 (GraphPad 

Software). Error bars are reported as the standard error of the mean. Pairwise 

comparisons were done using two-tailed Student’s t-tests. Multiple comparisons of means 

were performed using one-way analysis of variance followed by Tukey’s multiple 

comparison tests. Differences between groups were considered significant at P-values 

below 0.05 (*) and the P-values are denoted separately for values below 0.01 (**).  

Results  

To identify flow-sensitive genes in arterial endothelium in vivo, endothelial-

enriched RNA was obtained directly from mouse carotid arteries at various timepoints 
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post-partial carotid ligation surgery in C57BL/6 mice (Figure 3.3A) and applied to a 

microarray. Using this method, our lab previously identified ~600 “mechanosensitive” 

genes whose expression changes in ECs exposed to disturbed flow in the left carotid 

artery (LCA) as compared to unidirectional flow in the right carotid artery (RCA) for 12 

and 48 hours. 

Discovery of D-flow-induced DNMT1 Overexpression Using Microarray 

DNMT1 was initially identified as a potential mechanosensitive gene in 

endothelial cells from these previous in vivo mRNA array studies described in detail in 

the methods section17. The mRNA array showed that DNMT1 expression was ~2.4-fold 

higher in the left carotid artery (LCA, which was partially ligated and exposed to d-flow 

for 48h) than in the contralateral right carotid artery (RCA, exposed to s-flow)17. 

DNMT1 is Upregulated at the mRNA and Protein Level by D-flow Exposure to the 

Mouse Endothelium In Vivo 

We validated this endothelial microarray data by qPCR, immunostaining, and 

western blot both in vivo and in vitro. DNMT1 mRNA expression showed a significant 

increase by more than 2-fold in the LCA endothelium as compared to that of the RCA at 

48 hours post-partial carotid ligation (Figure 3.8B). Similarly, robust DNMT1 protein 

expression was observed in the flow-disturbed LCA (48 hours post-ligation) compared to 

the contralateral RCA and sham-controlled LCA and RCA (Figure 3.8C). Importantly, a 

robust DNMT1 protein expression was also observed in endothelial cells in the lesser 

curvature (LC) of the aortic arch, which is naturally and chronically exposed to d-flow 

without the ligation surgery, but not in the greater curvature (GC, an atherosclerosis-

resistant region, which is naturally exposed to s-flow) (Figure 3.8D and E). Interestingly, 
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DNMT1 expression was increased in the intimal and medial layers of the LCA (Figure 

3.8C), suggesting that d-flow affected the protein expression in both endothelial and 

smooth muscle cells.  Of the catalytically actives, DNA methyltransferase DNMT1 is the 

only one with increased expression by D-flow in vivo (Figure 3.9). 

 

Figure 3.8: DNMT1 expression is induced by d-flow in endothelial cells in vivo and 
in vitro. Schematic diagram of the partial carotid ligation model, in which 3 of the 4 
caudal branches of the left common carotid artery (LCA) are ligated, while the 
contralateral right common carotid artery (RCA) remains untouched as an internal 
control. Also depicted are the naturally, chronically flow-disturbed lesser curvature 
(LC) and the unidirectional- flow greater curvature (GC). (B) Validation of 
microarray results by qPCR was performed with endothelial-enriched total RNA 
obtained from the LCA and RCA at 0, 24, and 48 hours after ligation in C57BL/6 
mice. DNMT1 mRNA levels were normalized to 18S. Data are shown as the mean ± 
SEM. *P < 0.05, n = 8 (0 hours), n = 9 (24 hours), n = 12 (48 hours)16. (C) LCA and 
RCA frozen sections 48 hours after ligation (scale bars: 50 µm) and (E) the LC and 
GC (en face preparation; scale bars: 100 µm) from C57BL/6 mice without ligation 
surgery were stained with DNMT1 antibody (red)16. Nuclei are stained with DAPI 
(blue), and elastic laminae autofluoresce green. The lumen (L) is indicated. (D) 
Diagram of the endogenously s-flow (greater curvature) and d-flow(lesser 
curvature) regions of the aortic arch. Figure of arch adapted from http://ars.els-
cdn.com/content/image/1-s2.0-S0270929512000447-gr1.jpg. 
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Figure 3.9: (A) q-PCR validation of microarray results demonstrating a time-course 
study of the fold-change in DNMT1, DNMT3a, and DNMT3b  expression at 12 and 
48 hours post-ligation in C57/BL6 mice. DNMT3a levels were undetectable by qPCR 
at 12 hours post-ligation. (B) Representative immunohistochemical staining of 
DNMT3a and DNMT3b protein (red) in carotid artery sections at 48 hours post-
ligation in C57/BL6 mice. Nuclei are stained with DAPI in blue and the elastin 
laminae autofluoresce green. L indicates the lumen of the blood vessel. (C) 
Representative immunohistochemical staining of DNMT1, DNMT3a, and DNMT3b 
protein (red) in the naturally flow-disturbed lesser curvature (LC) and 
unidirectional flow greater curvature (GC) and thoracic aorta (TA) in C57/BL6 
mice. Nuclei are stained with DAPI in blue and the elastin laminae autofluoresce 
green. 16  
DNMT1 is Overexpressed at mRNA and Protein Level in Cultured Endothelial Cells 

Exposed to D-Flow Using the Cone and Plate Viscometer 

These in vivo data were further confirmed in cultured human endothelial cells 

(HUVECs) exposed to oscillatory shear stress (OS, mimicking d-flow in vitro) compared 

to unidirectional laminar shear stress (LS, mimicking s-flow in vitro) for 24 hours. 
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DNMT1 mRNA and protein expression were significantly higher in HUVECs exposed to 

OS as compared with LS (Figure 3.10A and B), which directly demonstrates that 

DNMT1 expression is regulated by OS in endothelial cells. DNMT3b was also 

upregulated at the mRNA and protein levels by d-flow, but to a much lesser extent. In 

contrast, expression of DNMT3a was barely detectable and did not show significant 

changes in protein level (Figure 3.10). These results indicate that the expression of 

DNMT1 is strongly regulated in a flow-dependent manner in endothelial cells in vivo and 

in vitro, and that the other catalytically active DNMTs (DNMT3a or DNMT3b) do not 

have a dramatic effect. Therefore, subsequent studies focused on the role of DNMT1. 

 

Figure 3.10: DNMT1, DNMT3a, and DNMT3b mRNA expression in HUVECs  
exposed to either LS or OS for 24h measured by qPCR (A) and protein expression 
measured by Western Blot (B). ***p<0.001. HUVECs exposed to LS (15 dyn/cm2) 
or OS (±5 dyn/cm2, at 1 Hz) for 24 hours were used for qPCR and Western blot 
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analyses for DNMT1 using 18S and β-actin as respective internal controls. (C) 
DNMT enzymatic activity increases in HUVECs in OS conditions. This increase is 
blunted by a 5-day 5µM treatment of 5Aza. 16 

DNMT1 Inhibition in Endothelial Cells by 5-Aza-2’deoxycytidine (5Aza) or siRNA 

Inhibits D-flow-induced Inflammation In Vitro 

To determine the functional importance of DNMT1 in endothelial cells, human umbilical 

vein endothelial cells (HUVECs) were treated with either the DNMT inhibitor 5Aza or 

DNMT1 siRNA (siDNMT1). Optimization studies showed that 5Aza treatment in 

HUVECs decreased DNMT1 in a dose and time dependent manner (Figure 3.5). It was 

determined that a five day treatment of 5uM resulted in significant DNMT1 knockdown 

and a concomitant decreased DNMT activity with minimal cell death (Figure 3.5, Figure 

3.10C, and Figure 3.11).117 5Aza has preferential targeting of DNMT1 in ECs as is 

reported in other cell types, and it was found that 5Aza could prevent OS-induced 

DNMT1 overexpression and hyperactivity (Figure 3.10C), and decrease global 

methylation (Figure 3.7). Dose and time optimization studies for DNMT1 siRNA 

determined that a 48h treatment with 100nM siRNA led to sufficient knockdown of 

DNMT1 protein expression under both laminar and oscillatory shear conditions (Figure 

3.6 and Figure 3.12).  
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Figure 3.11: HUVEC TUNEL staining on a dose-curve treatment for 5 days of 5Aza  
showing endothelial apoptosis (red), using DNaseI treatment as a positive control for 
cell death.  

Exposure to OS increased DNMT1 expression and DNMT activity compared to 

LS and 5Aza inhibited this increase (Figure 3.12A). Treatment with 5Aza significantly 

prevented OS-induced monocyte adhesion to HUVECs (Figure 3.12C). Moreover, 

siDNMT1 also decreased OS-induced DNMT1 expression as well as monocyte adhesion 

to HUVECs (Figure 3.12B and D). Together, these results suggest that DNMT1 plays a 

major role in OS-induced endothelial inflammation.  
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Figure 3.12: DNMT inhibition blocks OS-induced endothelial inflammation.  
HUVECs were pre- treated with either 5-aza-2′-deoxycytidine (5Aza) at 5 µM for 5 
days or DNMT1 siRNA (siDNMT1) at 100 nM for 48 hours, and subsequently 
exposed to OS or LS for an additional 24 hours. (A and B) Cell lysates were then 
analyzed by Western blotting with the DNMT1 antibody and quantified by ImageJ 
analysis using β-actin as an internal control (n = 4 each, data are shown as the mean 
± SEM. *P < 0.05; **P < 0.01). (C and D) Under the same conditions and following 
shear, endothelial inflammation was determined by quantification of the number of 
THP-1 monocytes adhered to sheared endothelial cells (n = 4 each, data are shown 
as the mean SEM. **P < 0.01). 16 
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DNMT Inhibition by 5-Aza-2’deoxycytidine Blocks Atherosclerosis Development in 

Chronic and Acute Models of Atherosclerosis in Mice 

We used two different ApoE-/- mouse models to study the role of DNMT in 

atherosclerosis: the acute partial carotid ligation model with western diet which rapidly 

develops atherosclerosis within 3 weeks 113, and the conventional western diet-fed model 

that chronically develops atherosclerosis in 3 months 101,118. In the carotid ligation model, 

the LCA rapidly developed atherosclerosis within 3 weeks (Figure 3.13A), and this was 

inhibited by 5Aza treatment in a dose-dependent manner with 0.2 mg/kg/day being the 

lowest effective dose (Figure 3.13A and B). Immunostaining for the leukocyte marker 

CD45 showed a remarkable inhibitory effect of 5Aza on inflammatory cell infiltration at 

the 0.2 mg/kg/day dose (Figure 3.15A), which was consistent with the atherosclerosis 

data. In the conventional western diet model, 5Aza treatment (0.2 mg/kg/day) also 

significantly inhibited atherosclerosis development in the aortic arch and brachiocephalic 

arterial branch (Figure 3.13C and D). In both models, 5Aza treatment did not show a 

significant effect on the serum lipid profile (Figure 3.16A and C) and apparent health, but 

induced a smaller body weight gain than the control groups (acute study: 25 grams in 

control vs. 23 grams in 5Aza mice at 3 weeks; Chronic study: 34 grams in control vs. 31 

grams in 5Aza group at 3 month) (Figure 3.16B and D). As an additional control, we 

examined the effect of d-flow, atherosclerosis, and 5Aza treatment on 5-methylcytosine 

(5mC) content by immunostaining. The dramatically induced 5mC level in the partially 

ligated LCA at the 3-week time-point was significantly reduced by 5Aza treatment in a 

dose-dependent manner (Figure 3.15B). Taken together, these results provide strong 
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support that 5Aza treatment prevented atherosclerosis by reducing DNMT expression and 

activity in the arterial wall.  

 

 

Figure 3.13: Treatment with the DNMT inhibitor 5Aza inhibits atherosclerosis.  (A 
and B) Acute, partial carotid ligation model of atherosclerosis: ApoE–/– mice were 
given daily i.p. injections of 5Aza for 1 week at 0.1, 0.2, or 0.4 mg/kg/d, or saline as a 
vehicle control. Then, partial carotid ligation was done, and mice were fed a 
Western diet while continuing the same 5Aza treatment for 3 more weeks. Frozen 
sections of the carotid arteries were examined by oil red O staining (scale bars: 200 
µm) (A), and plaque area quantification (mm2) was done using ImageJ (B) (n = 13 
each, data are shown as the mean ± SEM. **P < 0.005). (C and D) Chronic, diet-
induced atherosclerosis model: ApoE–/– mice were fed a Western diet (without 
partial ligation surgery) and treated with 5Aza (vehicle or 0.2 mg/kg/d, daily i.p. 
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injections) for 3 months. Aortic arches were longitudinally sectioned and stained 
with oil red O (scale bars: 1 mm) (C), and plaque area (mm2) was quantified (D) (n 
= 10 for vehicle, n = 9 for 5Aza, mean ± SEM. **P < 0.005). 16  

Global methylation is reduced by 5Aza treatment in the acute D-flow and chronic 

diet-induced models of atherosclerosis. The decreased melting temperature of bisulfite-

converted repetitive DNA elements indicates a decrease in global DNA methylation, 

demonstrating the efficacy of 5Aza treatment (Figure 3.14).  

 

Figure 3.14: 5Aza treatment reduces global methylation in mouse blood cells.  (A,B) 
High resolution melting curve analysis shows decreased methylation in the normally 
highly methylated LINE1 long interspersed (A) and B1 short interspersed (B) repeat 
elements of the genome. The analysis was done on blood genomic DNA collected by 
submandibular bleed just before beginning the 5Aza treatment and one week after 
the start of the daily 0.2 mg/kg/day 5Aza injections. (n=20; mean ± s.e.m; * p<0.05)16 
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Figure 3.15:  5Aza treatment inhibits immune cell infiltration and DNA methylation 
in mice.  (A) Representative immunohistochemical staining of CD45 (red) in the 
LCA of the acute, d-flow induced atherosclerosis model, demonstrating a dose-
dependent decrease in immune cell infiltration after 4 weeks of 5Aza treatment from 
0.1-0.4 mg/kg/day doses compared to the vehicle control (scale bar = 100 µm). (B-C) 
Representative images show immunostaining of 5-methylcytosine (B) and DNMT1 
(C) in red in LCA frozen sections from the partially-ligated ApoE-/- mice as 
described in Figure 3, demonstrating a dose-dependent decrease in global DNA 
methylation and DNMT1 expression by 5Aza treatment (scale bars = 50 µm). Nuclei 
are stained with DAPI in blue and the elastin laminae autofluoresce green. 
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Figure 3.16: 5Aza has no major effects on serum lipid profiles and body weight.  
(A,C) Total blood serum cholesterol, triglycerides (TG), high density lipoprotein 
(HDL), and low density lipoprotein (LDL) in the acute, d-flow induced 
atherosclerosis model (A) and the chronic, diet-induced atherosclerosis model. 
Blood was collected from mice immediately before sacrifice. (B,D) Mouse body 
weights were measured weekly over the course of the 5Aza treatment in the acute, 
d-flow induced atherosclerosis model and in the chronic, diet-induced 
atherosclerosis model.16  

Mechanoreceptors and MicroRNAs are Potential Upstream Regulators of the DNMT1 

Shear Response 

The miR29 family are Flow-Sensitive MicroRNAs that are validated to target DNMTs 

These studies provide novel insight into the mechanism by which flow regulates 

gene expression in a DNMT1-dependent manner and uncovers novel genes involved in 

the endothelial flow response. However, much remains to be understood about the 

mechanism by which flow controls DNMT1. Our preliminary microarray data shows that 
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the miRNA29 family (mir29a, b, and c) is suppressed by d-flow and in silico analysis 

suggests that they may regulate DNMT1 directly. Using MirWalk, we performed a gene-

microRNA interaction search and discovered 50 miRs that have been experimentally 

validated to target DNMT1. We compared this list of DNMT1-targeting miRs to our 

microarray dataset of global miR expression at 48 hours post-ligation, and we discovered 

that 18 miRs that can regulate DNMT1 are downregulated significantly (by more than 

33%) by d-flow (Table 3.2). Future studies will be focused on the microRNA29 family 

(mir29a, b, and c) because they are known to regulate key biological functions, including 

epigenetics, cell cycle, and matrix remodeling, but miR29s have not been previously 

described in the context of endothelial biology.  

Table 3.2: Validated microRNAs that target DNMT1 and suppressed in the d-flow 
LCA.  
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Endothelial Cell Mechanoreceptors are Intermediate Players Between Flow Sensing and 

Overexpression of DNMT1  

As an additional route of examining the potential upstream regulation of DNMT1, 

we developed a predictive model to understand how the activity of different endothelial 

cell mechanoreceptors affects the expression and activity of DNA Methyltransferase. 

Well-studied mechanosensors known to play a role in endothelial cell 

mechanotransduction (Appendix A Table A1) were subjected to systems biology analysis 

using Ingenuity Pathways Analysis to determine their potential network connectivity to 

DNMT1. No direct binding interactions were found to occur between mechanosensors 

and DNMT1. However, a highly interconnected protein interaction network emerged as a 

potential regulator of the DNMT1 shear response (Figure 3.17). This involved the 

primary mechanosensors Platelet/Endothelial Cell Adhesion Molecule 1 (PECAM1), 

caveolin 1 (CAV1), and Vascular Endothelial Growth Factor Receptor (VEGFR), and 

secondary signaling molecules cyclin D1 (CCND1), Protein Kinase B (PKB, or AKT), 

annexin A5 (ANXA5), and embryonic ectoderm development (EED). We developed a 

directional regulatory map and created a computational model of gene expression and 

protein activity in the system using Matlab (Appendix A, Figure 1 and Table 2). The 

model was further expanded to include the DNMT1 inhibitor 5-Aza-2’deoxycytidine to 

determine whether we could accurately predict behavior of the system upon perturbation 

of DNMT1 expression. 5Aza is also known to upregulate expression of the 

mechanoreceptor CAV1119. Several assumptions were used due to lack of literature 

available and to enable sufficiently simple model development for the scope of this 
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analysis (Appendix A) and it is emphasized that this model should not be interpreted as 

predictive of the actual system, but rather should be used as a basis to guide future 

experimental design to analyze the upstream regulation of DNMT1. 

 

Figure 3.17: A Schematic Representation of the Endothelial Cell Mechanoreceptors 
and the Signal Transduction Pathway to DNMT1.  

Using this model we tested all possible cases based on combinations of initial 

states (S) of the mechanosensors (simplified to either S=0: not expressed, inactive; S=1: 

expressed, inactive; and S=2: expressed, active). We found that a negative feedback 

mechanism turns off DNMT1 when both PECAM1 and CAV1 are expressed +/- active, 

and the state of VEGFR doesn’t affect negative feedback (Appendix A, Figure 5). 

Additionally, when PECAM1 and CAV1 are not both expressed together, DNMT1 stays 

expressed and active indefinitely (Appendix A, Figure 6). Finally, the addition of 5Aza 

alters the dependence of negative autoregulation of DNMT1 on both PECAM1 and 

CAV1, so that only PECAM1 needs to be expressed to achieve negative autoregulation 
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(Appendix A, Figure A7 and A8).  

Discussion 

Prior to 2014, there had been no accounts of flow-regulated DNA 

methyltransferases (DNMTs) and their functional relevance to endothelial cell (EC) 

biology. 5-Aza-2’deoxycytdine (5Aza) and siRNA treatment allowed us to directly 

observe the functional consequence of DNMT1 inhibition on EC function. Results from 

in vitro studies predicated the question of a functional effect of DNMT1 inhibition on 

disease outcome. Our two in vivo models of acute d-flow-induced and chronic diet-

induced atherosclerosis are robust and well-tested systems that we used to analyze 

DNMT inhibition effects. The question of whether DNMT1 inhibition affects EC 

inflammation in vitro and atherosclerotic plaque development in vivo had never been 

addressed before. 

We showed that DNMT1 is a mechanosensitive gene upregulated by d-flow and 

that DNMT inhibition prevents d-flow-induced endothelial inflammation in vitro and 

atherosclerosis development in vivo. Given its dramatic flow-sensitivity, we expect that 

DNMT1 is the dominant DNMT involved in endothelial inflammation and 

atherosclerosis. However, it would also be interesting to examine the role of the other 

catalytically active DNMTs (DNMT3a and DNMT3b) in EC function, especially given 

our findings that DNMT3b is slightly upregulated by d-flow at the protein level (Figure 

3.10) and that DNMT3a was found to be shear-responsive in ECs in other model 

systems57,65. In April 2014, Jiang et al. reported that DNMT3A is overexpressed by d-

flow in human aortic endothelial cells (HAEC) and that this regulates Klf4 

transcription.65 Klf4, a key mediator of endothelial function, maintains an anti-
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inflammatory, quiescent endothelial state in unidirectional flow conditions. The group 

showed that d-flow increases DNMT3A binding to the Klf4 promoter leading to DNA 

hypermethylation and blocking MEF2 (myocyte enhancer factor-2) binding. Using 

methods similar to ours, they showed that DNMT inhibition decreased Klf4 promoter 

methylation, increased its expression, and reversed the d-flow-induced dysregulation of 

downstream Klf4 targets eNOS, thrombomodulin (THBD), and monocyte 

chemoattractant protein-1 (MCP-1). This study demonstrates that in other experimental 

setups analyzing the shear effect on endothelium, other DNMTs also appear to be 

dysregulated. Additionally, DNA methylation via DNMTs plays a direct role in gene 

expression control. Before these studies, DNMTs in ECs had not been previously 

implicated as a mechanism for flow-mediated gene expression control. 

In order to determine whether there is a further functional role for DNMT1 in 

atherosclerosis development, additional markers of EC dysfunction that increase in d-

flow (including inflammation, apoptosis, proliferation, thrombosis and cell migration) 

could be examined in future studies. Additionally, the in vivo effect of EC-specific 

DNMT1 knockdown on plaque development can be tested. Due to the potential off-target 

and non-tissue-specific effects of 5Aza, the acute and chronic in vivo mouse 

atherosclerosis experiments done here can be repeated endothelial cell specific DNMT1 

knockout mice as described in the Future Directions section of Chapter 6.  

While we established that DNMT1 is upregulated in d-flow and plays a key role 

in atherosclerosis development, the mechanism of DNMT1 upregulation is unknown. The 

goal of the initial microRNA and mechanosensor computational analyses described here 

were to aid in the design of future experiments to analyze the upstream regulation of 
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DNMT1. We anticipate the usefulness of future studies to examine the effect of mir29, 

PECAM1, CAV1, or VEGFR silencing or overexpression on DNMT expression and 

activity, as well as EC biology and atherosclerosis development. Such potential studies 

are described in more detail in Chapter 6 Future Directions. 

  Overall, in Chapter 3 we found that DNMT1 is a functionally important 

mechanosensitive gene that plays a key role in endothelial cell (EC) inflammation in vitro 

and plaque development in vivo. D-flow-induced DNMT1 upregulation was verified at 

the transcript and protein level in vitro and in vivo. The role of DNMT1 in atherosclerosis 

development in vivo was tested using the DNMT1-specific inhibitor 5Aza on chronic and 

acute atherosclerosis models to determine the functional outcome of blocking DNMT1 

overexpression in d-flow. Results show that DNMT1 inhibition by 5Aza blocks 

endothelial inflammation in vitro and atherosclerosis progression in vivo, implicating 

DNMT1 to have a key functional role in d-flow-induced EC dysfunction and 

atherosclerosis. 
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CHAPTER 4 DNA METHYLATION-DEPENDENT 

ENDOTHELIAL GENE EXPRESSION RESPONSE TO FLOW 

Summary 

In this study, we sought to determine the mechanism of action of DNMT1 

overexpression and conversely inhibition by 5Aza in disturbed-flow-exposed 

endothelium. Since DNMT1 is known to methylation genomic DNA, and DNA 

methylation may control gene expression, we designed two parallel “omics” studies to 

examine the effects of both disturbed flow and DNMT inhibition on the endothelial cell 

DNA methylome and transcriptome in vivo. We carried out the reduced representation 

bisulfite sequencing (RRBS) study using endothelial-enriched genomic DNA (gDNA) 

obtained from the RCA and LCA of partially ligated mice at two different time points of 

two days and one week post-ligation. To further determine whether the flow-dependent 

DNA methylation changes were regulated in a DNMT-dependent manner, mice treated 

with 5Aza were compared to a saline vehicle control. Moreover, to determine which 

mechanosensitive genes has transcriptional dysregulation, potentially by DNA 

hypermethylation, we carried out a concomitant gene transcript microarray study using 

endothelial-enriched RNA obtained from the LCA and RCA of partially-ligated mice 

treated with either saline (RCA vs. LCA) or 5Aza (Aza-RCA vs. Aza-LCA). From these 

studies we found that DNMT inhibition by 5Aza rescues global gene expression in LCA 

to healthy state. While genome-wide and functional genomic elements did not have 

dramatic methylation changes under these conditions, we followed a specific hypothesis 

and found a subset of genes that had d-flow-induced promoter hypermethylation 

correlating with gene suppression, both were 5Aza-reversible. Based on a systems 
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biology and further bioinformatics analysis, we found that gene promoters containing 

cyclic AMP Response Elements (CRE) are preferentially methylated by d-flow in a 

5Aza-dependent manner. We further discovered that, on the genome scale, CRE 

hypermethylation corresponds to decreased gene expression. These studies used “omics” 

datasets to uncover a key regulatory network regulated by DNA methylation that may 

provide a basis for novel therapeutic approaches for atherosclerosis. A substantial portion 

of Chapter 4 was published as follows: Dunn, J., Qiu, H., Kim, S., Jjingo, D., Hoffman, 

R., Kim, C. W., Jang, I., Son, D. J., Kim, D., Pan, C., Fan, Y., Jordan, I. K. Jo, H. Flow-

dependent epigenetic DNA methylation regulates endothelial gene expression and 

atherosclerosis. J Clin Invest 124, 3187-319916. 

Introduction 

The Relationship Between DNA Methylation and Gene Expression 

CG methylation in the promoter region of a gene, close to the transcription start 

site, is associated with repression of gene expression. Although debated, promoter 

methylation is thought to affect the transcription of genes in two ways.120-122 First, 

methylation of DNA physically impedes the binding of transcriptional proteins to the 

gene. Second, methylated DNA is bound by methyl-CpG-binding domain proteins 

(MBDs). MBDs then recruit additional repressive proteins to the locus, such as histone 

and chromatin modifiers, and this complex causes chromatin compaction. The exact 

mechanism of crosstalk between DNA methylation and histone modifications remains a 

topic of extensive research.123,124 

CG methylation in the gene body is less straightforward125-127. Initial studies on 

intragenic methylation indicated that gene body hypermethylation is correlated with 
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increased gene expression 128. On the contrary, it has been argued that intragenic 

methylation causes chromatin compaction and blocks RNA Polymerase II binding, which 

prevents transcript elongation 129. Gene body methylation may activate or repress genes 

depending on the location (exon/intron/alternative promoter), density (CpG Island), and 

extent of methylation 130. For example, expressed genes may be associated with 

methylated gene bodies, and unmethylated intragenic CpG island EP300-bound 

enhancers, and vice-versa for silenced genes 127.  

Methods to Analyze DNA methylation 

MspI/HpaII 

To examine the overall level of methylation at the genome level, a restriction 

enzyme digest can be done using MspI and HpaII (methylation insensitive and sensitive, 

respectively; both recognize the 5’-CCGG-3’ restriction site). When DNA is 

hypermethylated globally, HpaII is blocked from cutting, but when DNA is 

hypomethylated, HpaII is able to cut. 

Bisulfite Conversion and BS-Seq 

Additional methylation assays rely on bisulfite technology, the gold standard in 

DNA methylation analysis 131. Bisulfite salt deaminates unmethylated cytosines in 

genomic DNA, which converts them to uracil. However, methylated cytosines are 

protected from this chemical conversion and remain cytosine after bisulfite conversion. In 

this way, the only cytosines that remain in the genomic DNA are those that were 

originally methylated. After PCR amplification, the unmethylated cytosines become 

thymine, while methylated cytosines are still cytosine (Figure 4.1). 
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Figure 4.1: Scheme for Bisulfite Conversion.  Adapted from 
http://www.epigenomics.com/en/science-and-technologies/bisulfite-technology/ 

There are several possible subsequent steps one can take with the bisulfite 

converted DNA. Bisulfite sequencing, for example, involves PCR amplification of the 

bisulfite-converted genomic DNA with specially designed PCR primers. Bisulfite 

sequencing primers are limited to regions that have no CG sites (any cytosine in the 

primer design region will always be converted to a U and will be represented as a T in 

primer design) but must encompass several CG sites in the amplified region in order to be 

a useful probe. Amplicon size is generally limited to 500bp or less due to genomic DNA 

fragmentation (to ~3kb fragments) during bisulfite conversion and due to the difficulty of 

specific primer design. Because bisulfite conversion alters the DNA sequence, 

comparison of the sequencing product to the reference sequence for that locus reveals 

cytosines that were methylated and unmethylated in given conditions. Bisulfite converted 

genomic DNA can also be subjected to high resolution melting curve analysis to 

determine the number of C’s vs. T’s in a specific region amplified by qPCR 132. More 

methylated DNA will have more C’s after bisulfite conversion, and will thus have a 
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higher melting temperature due to more hydrogen bonding between C-G bonds as 

compared with A-T bonds 116,133. 

RRBS 

Reduced Representation Bisulfite Sequencing (RRBS) enables researchers to 

determine genome-scale methylation patterns at the nucleotide resolution. 134-136 Genomic 

DNA is cut with the methylation-insensitive restriction enzyme MspI to enrich for 

sequences containing many CG sites, and fragments are then size-selected and cloned 

into a library for sequencing. RRBS enables researchers to probe relevant, CG-rich 

portions of the genome, eliminating the need for full genome sequencing. Conveniently, 

Meissner et al. further modified the RRBS technique to allow for as low as 30ng of input 

DNA, which makes it compatible for application with our in vivo mouse carotid artery 

ligation model 137. RRBS is a cost-effective technique to scan the genome for interesting 

loci based on methylation changes 138. 

OMICS approaches to DNA methylation and gene expression studies 

Genome-Wide Analysis 

With the advent of high throughput genome-wide analysis technology such as the 

microarray it became possible to study the expression of thousands of genes throughout 

the genome simultaneously 139. This greatly impacted the field of vascular 

mechanobiology by enabling researchers to track a large host of genes in a controlled, 

well-defined environment. The resulting studies displayed clear evidence of the 

endothelial cells’ keen ability to sense and convert mechanical stimuli into biochemical 

signaling responses. Microarray studies illuminated numerous key regulatory pathways 
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and their dynamics while also supporting the discovery of novel mechanosensitive genes 

and functional gene clusters. These datasets continue to support the working hypothesis 

that laminar, unidirectional flow upregulates “atheroprotective” genes and downregulates 

“atheropathogenic” genes while disturbed, reversing, or stagnant flows result in the 

opposite phenomenon of enhancing atheropathogenic genes and suppressing 

atheroprotective genes. 

In 2001, the complementary DNA (cDNA) microarray was first utilized in vitro to 

study the effect of shear stress on gene expression profiles of cultured endothelial cells. 

Gimbrone et al. used the cDNA array to define gene expression profiles of 11,397 genes 

in cultured human umbilical vein endothelial cells (HUVEC) exposed to steady laminar 

flow, turbulent flow, or static flow over 24 hours. Functional tests determined that several 

“mechanosensitive” genes activated under laminar flow were, in fact, atheroprotective, 

and that the reciprocal was true regarding atheropathogenic genes.6,20 Chien et al. 

discovered 125 differentially regulated mechanosensitive genes in human aortic 

endothelial cells (HAEC) exposed to laminar flow versus static conditions by a less 

comprehensive cDNA microarray but under more rigorous statistical testing as compared 

to Gimbrone.26  Both groups used RT-PCR validation and array analyses described later 

in further detail. Broadly, it was found that gene expression profiles in endothelial cells 

exposed to laminar, unidirectional flow are distinctly different from those under disturbed 

flow, while static flow profiles have a strong resemblance to turbulent shear expression 

profiles. More specifically, laminar shear stress causes suppression of genes associated 

with inflammatory responses, matrix remodeling, and cell proliferation, and activates 

genes involved in signal transduction, cytoskeletal remodeling, and angiogenesis.  
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There are various approaches to microarray data analysis. Raw data can be 

analyzed in the most straightforward manner by comparison of the relative intensities of 

probe hybridization, expressed as a fold change, which represent the levels of differential 

transcript expression. Rigorous statistical analysis and filtering is necessary to lend 

significance to fold change values. Large datasets can be parsed by hierarchical clustering 

based on various criteria such as gene ontology, location in the genome, or expression 

patterns alluding to co-regulation. However, this method may disregard underlying trends 

and often cannot tease out complex biological interactions formed by specialized gene 

circuitry. The Gimbrone group created the analytical software Argus, which allows the 

integration of multiple experimental conditions to help account for this difficulty. Both 

open source and proprietary systems biological tools like Ingenuity Pathways Analysis 

have become available. In addition to systems-wide analyses, computational tools at the 

gene-specific level such as DAVID, amiGO, NCBI UniGene, and the UCSC Genome 

Browser, make gene ontology and functional studies quite feasible.  

Integrative approaches to analyzing DNA methylation and gene expression 

datasets from high-throughput approaches such as microarray and next generation 

sequencing-based assays are highly useful to determine the interplay between these two 

“omics” datasets. 

Cyclic AMP Response Elements and the Cyclic AMP Response Element Binding Protein 

CREB 

Cyclic AMP response elements (CRE) were discovered in 1986 by separate 

analyses that converged on the importance of a sequence motif existing in the promoters 

of several cAMP-responsive genes, including somatostatin, proenkephalin, and 



www.manaraa.com 59 

phosphoenolpyruvate carboxykinase (PEPCK) 140-142. The finding that the 8 bp 

palindrome sequence 5'-TGACGTCA-3' conferred gene expression responsiveness in the 

presence of cAMP was later found to also exist in many other genes. 143 In fact, many cell 

cycle genes such as cyclins A and D1 contain CREs, as do an abundance of metabolic 

genes 143-146. In additional to the full CRE (fCRE) motif TGACGTCA, CREs also exist in 

half-sites (hCRE) as CGTCA or TGACG 147,148. As of the year 2001, there were 105 

identified genes containing functional CREs (~50% containing the fCRE and the other 

50% containing a hCRE) and the majority were found between -50 to -150bp upstream of 

the transcription start site 143. Gene ontology analysis of CRE-containing genes revealed 

that 38% of all CRE-containing genes are transcription factors 149.  

The cAMP response element binding protein (CREB) is a transcription factor that 

binds to cAMP response elements (CRE) of genes and regulates transcription. In this 

manner, CREB controls global gene expression and its dysregulation is linked to many 

developmental pathways and diseases. CREB can selectively distinguish its binding motif 

from that of AP1 (which is TGACTCA), and it is thought that two key lysines (304 and 

305) are key for CREB recognition of the CRE site. Interestingly, lys304 mutation 

interrupts CREB binding to fCRE, but not to the hCRE 150. Additionally, while fCRE has 

a higher overall binding affinity for CREB as compared to hCRE, the affinity of hCRE 

increases much more dramatically than that of fCRE upon CREB phosphorylation, and 

this has been implicated as a mechanism of fine-tuning gene expression of hCRE-

containing genes 151,152. Additional bZIP transcription factors, including C/EBPα, also 

bind to CRE 153.   
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It is known that methylation of the cytosine in CpG dinucleotide of both hCRE 

and fCRE blocks CREB binding, but can actually increase C/EBPα binding to hCRE 

149,153,154. Methylation-dependent CREB binding is a key mechanism in Wp gene 

silencing on the Epstein-Barr virus during viral-induced B cell to lymphoblastoid 

transformation, and also in hCRE control of the testis-specific expression/somatic cell 

silencing of Pdha2 155-157. CREB binding affinity may also relate to sequence motifs 

surrounding the CRE, for example Tax-responsive elements (TREs) contain the CGTCA 

motif but are surrounded by highly CG-rich flanking regions and TREs demonstrate a 

significantly lower binding affinity for CREB158,159. 

CREB was one of the first transcription factors found to have activity regulated 

by phosphorylation. It has been shown that protein kinase A (PKA) downregulation in 

ECs ecxposed to d-flow leads to decreased CREB phosphorylation and decreased CREB 

binding to CRE elements 160. Interestingly, while cilostazol, a phosphodiesterase III 

inhibitor that increases cAMP and activates CREB, is used clinically to treat patients with 

PAD, its mechanism is still unclear, and it is contraindicated for heart failure patients. 

Methods 

Partial Carotid Ligation Surgery and 5Aza-2’deoxycytidine Treatment Schemes  

To decrease complications arising from the hypercholesterolemic conditions in 

ApoE-/- mice, C57BL/6 mice were used for these studies. At the earlier timepoint, 

C57BL6 mice were partially ligated by Chanwoo Kim (see methods in Chapter 3 for 

detailed explanation) without any other treatment and gDNA was collected by Jessilyn 

Dunn and Soyeon Kim from the carotid arteries two days later to determine the effect of 

flow alone on DNA methylation. At the later timepoint, mice were pre-treated with saline 
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or 5Aza (0.2 mg/kg/day) for two weeks by intraperitoneal injection, then were partially 

ligated by Chanwoo Kim and the 5Aza treatment was continued for one week after. 

ligation.  

 

Figure 4.2: 5Aza treatment scheme to study the effect of Flow on Genome-Wide 
DNA Methylation  (by reduced representation bisulfite sequencing, or RRBS) and 
Gene Expression (by microarray) Patterns in the Endothelium in vivo. C57BL/6 
mice were treated with 5Aza or saline for 2 weeks at 0.2 mg/kg/day via i.p. 
injections. Then, partial carotid ligation was done and mice continued to receive the 
same 5Aza or saline treatment for 1 more week. Following sacrifice, endothelial-
enriched genomic DNA (gDNA) was collected from the LCA and RCA.  

Endothelial Cell Genomic DNA and RNA Preparation Quality Control 

To measure the purity of endothelial cells in our gDNA and RNA preparations 

from flushing the carotid arteries, we performed a number of control experiments on 

C57Bl6 mice at 7 days post-ligation. The goal of these experiments was to determine the 

cell populations existing in our samples as a ratio of ECs to SMCs and immune cells. 

These control experiments included qPCR on eNOS, aSMA, and CD11B, single-gene 

bisulfite sequencing of eNOS, and immunohistochemistry and cell counting of ECs, 

SMCs, and immune cells using cell profiler (see Appendix B for details and results).   
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Genomic DNA and RNA Extraction from Mouse Carotid Arteries for Transcriptome and 

Methylome Studies 

Microarray 

Total intimal RNA was collected by flushing the RCA, LCA, Aza-RCA, and Aza-

LCA with 150 µl of Qiazol and was purified using the miRNeasy Mini Kit (Qiagen). 

Three carotid RNA samples were pooled and the combined sample was amplified and 

reverse transcribed, and the cDNA was applied to Illumina Mouse WG6 microarray 

chips. The microarray detected 45,281 probes corresponding to 30,854 genes. 

The two repeated timepoints in our lab’s previous microarray studies using the 

Illumina and Affymetrix microarrays make it possible to verify the first microarray 

results. Previously published shear-sensitive genes were found to have similar expression 

patterns in our arrays, and numerous novel mechanosensitive genes were also discovered 

through this in vivo microarray study 

RRBS 

Genomic DNA was collected from mouse carotid arteries (as described 

previously) by flushing with 200 ul of a 1:1 solution of Buffer AL and nuclease-free 

water. Genomic DNA was purified using the DNeasy Blood and Tissue Kit (Qiagen) and 

20 genomic DNA samples were pooled per RRBS sample. gDNA for the RCA, LCA, 

Aza-RCA, and Aza-LCA was examined for quantity and quality using the Nanodrop 

(Table 4.1) and samples were sent to Zymo Research Corp. where RRBS was carried out 

by bisulfite conversion, genome reduction by restriction enzyme digest and size selection, 

library preparation, and next generation sequencing. 
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Table 4.1: Quantity and quality of gDNA at 7 days (with or without 5Aza treatment) 
or 2 days post-ligation as measured by Nanodrop.  The gDNA was submitted to 
Zymo Research for bisulfite conversion, RRBS library prep, sequencing, and 
alignment. 

 

 

 

 

 

 

 

 

Computational Analysis of Genome-wide Methylome (Reduced Representation Bisulfite 

Sequencing) and Transcriptome (Microarray) Datasets 

Next generation sequencing reads from the RRBS study were mapped to the Mm9 

genome assembly by Zymo Research Corp. The resulting mapped files were analyzed by 

our lab. Methylome coverage was determined by dividing the number of unique CG sites 

covered by each individual RRBS dataset by the number of total CG sites in the Mm9 

genome assembly (21,342,492 CG sites in chromosomes 1-19, X, and Y). Promoter 

coverage was determined by confining the RRBS and Mm9 assemblies to gene 

transcription start sites (TSS, as defined by the NCBI reference sequences database) ± 

1kb (there are 2,130,470 CG sites in these Mm9 Assembly promoters), and then again 

 
Amount of gDNA (ng) 260/280 ratio 

7 d Ctrl LCA 650.7 1.65 

7 d Ctrl RCA 477.0 1.49 

7 d Aza LCA 414.0 1.49 

7 d Aza RCA 255.6 1.66 

2 d LCA 1,550 1.64 

2 d RCA 1,450 1.79 



www.manaraa.com 64 

calculating coverage in these confined regions. The methylation ratio at each CG site was 

calculated by the number of methylated reads divided by the total number of reads at that 

site, and the percent methylation at each site is the methylation ratio multiplied by 100. 

Heatmap correlation scatterplots were generated using the smoothScatter function 

in R. The log of the methylation ratios of only those unique CG sites covered by all four 

datasets were plotted and the R2 values were determined by fitting linear models with the 

R lm function 10,161,162.  

Analysis of the DNA methylation Levels Around the Transcription Start Site, Gene 

Body, and Transcription Termination Site and its Relationship to Gene Expression Levels  

The average percentage (± standard error) methylation levels was calculated using 

100bp windows spanning the transcription start site (TSS), gene-body, and transcription 

termination site (TTS), using the regions 3kb and 5kb upstream and downstream of the 

TSS respectively and 5kb and 3kb upstream and downstream of TTS, respectively, across 

five gene expression level bins. This analysis was done by Dr. Daudi Jjingo in 

collaboration with Dr. I. King Jordan 126.  

Emergent Methylation Patterns 

For the a priori emergent methylation pattern analysis to rank the average 

methylation ratio of each gene promoter from the four experimental groups at 7 days 

post-ligation, was done using only those CG sites confined to promoter regions (TSS ± 

1kb). We calculated the promoter methylation ratio by the total number of methylated 

reads divided by the total number of all reads in the region, normalized to the number of 

CG sites in that region. This was done for each RRBS dataset, and then the methylation 

ratio for each gene promoter was compared between datasets and ranked from highest to 
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lowest methylation ratio. There are 24 possible combinatorial patterns that can result 

from this ranking analysis by ordering the 4 samples from highest to lowest, and we 

counted the number of genes that fell into each of the 24 possible pattern categories. This 

analysis was done in collaboration with Dr. Daudi Jjingo and Dr. I. King Jordan. 

Promoter Cyclic Amp Response Element CpG Methylation  

After discovering CREB as a common network regulator of the 11 gene subset 

discovered in Chapter 5, the RRBS datasets were subsequently mined to determine the 

methylation ratio for each sample (RCA, LCA, Aza-RCA, and Aza-LCA) specifically at 

the CpG dinucleotide within CRE sequences, and then again but for those CRE sequences 

specifically confined to gene promoter regions (TSS ± 1kb). 

The RRBS datasets were analyzed for genomic and promoter (transcription start 

site ± 1kb) CG content and methylation status, as well as CRE element methylation status 

using the R Bioconductor packages BSGenome (specifically, the Mm9 Genome 

Assembly apprehended from the UCSC database), GenomicRanges, Genomic Features, 

and Biostrings.  

The Relationship Between Promoter Cyclic Amp Response Element CpG Methylation 

and Gene Expression 

First, the sequence of the promoters (+/- 1 kb from the transcription start site, or TSS) of 

all genes (34,000) in the Mm9 genome were downloaded from the UCSC Genome 

Browser. Those genes on the hap, un, and rand chromosome maps were removed from 

the set because they come from either alternate assemblies or unmapped contigs (hap: 

different haplotypes/alternative alleles that may cause duplicated sequences in the 

reference; un: unmapped regions; rand: random contigs whose exact location on the 
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chromosome is uncertain). This resulted in 33,826 promoter sequences included in the 

downstream analysis. We performed a string search for the three CRE motifs on this set 

of promoter sequences, and found that there were 9,556 genes containing CGTCA in 

their promoter, 9,536 containing TGACG, and 863 containing TGACGTCA. The 

genomic ranges of these gene promoter sequences were then mapped back to our RRBS 

CpG methylation data using only those sites covered by all RRBS datasets (3,232,969 

CG sites) at a minimum of 10 reads per CG site. We were then able to map the promoter 

CRE CG methylation status of a gene to its expression using our microarray data to 

determine the relationship, which resulted in 4,286 genes containing CGTCA in their 

promoter, 3,326 containing TGACG, and 503 containing TGACGTCA (Figure 4.9). 

Subsequently we filtered out those genes with the most dramatically changed 

promoter CRE CG site corresponding to the most dramatic gene expression changes by 

thresholding so that only those genes that followed our expected trends 

(hypermethylation and lower probe intensity in the LCA vs. RCA) were kept.  For the 

thresholding values, we parameterized the data to account for both the CRE CG 

methylation change as well as the probe intensity change. Using this parameter (arbitrary 

units), the data was thresholded so that the difference between the flow-altered samples 

(measured by the length the line between the LCA and RCA datapoints for each gene, 

which is also the magnitude of the parameter change) in Figure 4.10 was greater than 100 

and the slope of that line (the rate of change of the parameter) was less than -50. 

CpG Methylation Analysis in Functional Genomic Regions  

Global percent methylation for each of the RRBS datasets was determined using 

only those CG sites covered by all datasets (the intersection of the RRBS datasets: 
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3,232,969 CG sites). The values were calculated by averaging the methylation ratios 

across every CG site in the genome or only within specific regions, including enhancers 

(experimentally validated by the VISTA enhancer browser), promoters (+/- 1 kb from the 

transcription start site, or TSS), gene body (the region between the TSS and TTS), and 

transcription termination site (TTS; defined as within ± 1kb of a gene TTS).  

The VISTA enhancer browser is a resource containing experimentally validated 

human and mouse noncoding fragments with gene enhancer activity. Putative enhancers 

are selected by the VISTA group based on their conservation across vertebrates and/or 

positive ChIP-Seq data of enhancer marks. A subsequent in vivo enhancer screen is done 

using enhancer/LacZ reporter transgenic mice to assess spatial expression during 

embryonic development, which enables identification of distant-acting transcriptional 

enhancers. “Positive” enhancers are defined as those experimentally validated by 

demonstrating reproducible expression in the same structure in at least three independent 

transgenic embryos. We used the genomic ranges for only positive mouse enhancer 

regions defined by VISTA (244 regions) to measure global enhancer methylation in our 

RRBS data (Figure 4.7). 

Results 

Quantification of Relative Cell Types for Endothelial Cell Genomic DNA and RNA 

Quality Control 

One major complication of DNA methylation studies on samples taken directly 

from in vivo is the possibility for the inclusion of multiple cell types. To ensure that 

changes seen in our DNA methylation and gene expression data could be attributed to the 

endothelial response to experimental conditions rather than differential DNA methylation 
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or gene expression occurring across different cell types, we performed a brief study 

(Appendix B) to measure the number of contaminating cell types we could expect in our 

endothelial cell genomic DNA and RNA preparations. Detailed analysis of the results 

from these experiments indicate that we have minimal contamination from SMCs and 

immune cells in our endothelial preparations, and underscore the validity of our 

experimental and analytical methods for the following experiments.  

Validation of 5-Aza-2’deoxycytidine Efficacy by High Resolution Melting Curve 

Analysis 

As a control for 5Aza treatment, blood was collected one week after the start of 

the treatment and global DNA methylation was measured by high resolution melting 

curve analysis (HRM). This showed that global methylation decreased as early as one 

week after 5Aza treatment, demonstrating the efficacy of this treatment strategy (Chapter 

3 Figure 15). 

Reduced Representation Bisulfite Sequencing Data Analysis 

The two RRBS datasets for the LCA and RCA at the early timepoint of two days 

post-ligation did not show a significant difference in methylation. Further analysis was 

performed using only the four RRBS datasets collected at the later timepoint of 1 week 

post-ligation, for which we also collected a concomitant transcriptome dataset for 

comparison and analysis. 

The four RRBS datasets (RCA, LCA, Aza-RCA, and Aza-LCA) were mapped to 

the Mm9 (July 2007/NCBI37) mouse genome assembly, which contains a total of 

21,342,492 CG sites. Our four RRBS datasets showed a methylome coverage of ~23% 

(4,967,716 unique CG sites on average) of all CG sites in the mouse genome, including 
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promoters, gene bodies, and intergenic regions (Table 4.2). Interestingly, ~53% 

(1,125,997 CG sites on average) of all CG sites in the promoter regions (defined as 

transcription start site ± 1kb) were covered by our RRBS datasets (Table 4.2), which 

shows a higher coverage in the promoter regions as compared to the other genomic sites. 

 

Table 4.2: The number of CG sites in the Mm9 Genome Assembly and in each 
RRBS dataset, and the number of CG sites specifically in gene promoter regions  
(transcription start site ± 1kb) in each.  

 

To measure the DNA methylation changes at each CG site in the RRBS datasets, 

only those covered in all four datasets (RCA, LCA, Aza-RCA, and Aza-LCA) were 

selected for further analysis (3,232,969 unique CG sites). The methylation ratio at each 

CG site was compared between the RCA and LCA as well as the Aza-RCA and Aza-

LCA using heatmap correlation scatterplots (Figure 4.3A and B). Of the 3.2 million CG 

sites examined, 4.1% (131,176 CG sites) showed hypermethylation by more than 40% in 

the LCA as compared to the RCA, whereas 93% showed no significant difference in 

methylation, defined as less than a 40% difference between the RCA and LCA (Figure 

4.3A). 5Aza treatment reduced the number of hypermethylated CG sites in the LCA by 

more than 50% as compared to the saline group (from 131,176 to 55,224 CG sites), while 
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97% of the CG sites showed no significant difference between the Aza-RCA and Aza-

LCA (Figure 4.3B). This result showed that the small number (4.1%) of CG sites that 

were hypermethylated in the LCA by d-flow was substantially reduced by the 5Aza 

treatment (to 1.7%), suggesting that d-flow regulates genome-wide DNA methylation 

patterns in a DNMT-dependent manner.  

 

Figure 4.3: D-flow alters genome-wide DNA methylation patterns and gene 
expression in a 5Aza-dependent manner.  (A and B) gDNA from 20 LCAs and RCAs 
each were pooled and the genome-level methylation was analyzed by RRBS 
(reduced representation bisulfite sequencing). Shown are density heat map 
correlation plots portraying the methylation status at each of 3,232,969 CG sites 
covered by the RRBS analyses. The numbers indicated in the upper (131,176), 
middle (3,003,588) and lower triangles (98,205) in (A) indicate hypermethylated, not 
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altered significantly and hypomethylated CG sites, respectively, in the partially 
ligated LCA compared to the RCA in saline-treated mice. Likewise, the numbers 
shown in (B) indicate the same as in (A), but in the LCA and RCA obtained from 
mice treated with 5Aza. (C and D) Following sacrifice, endothelial-enriched RNA 
obtained from 3 LCAs and RCAs were pooled as one sample, and 3 samples per 
condition (LCA and RCA from saline vs. 5Aza treated groups) were analyzed by the 
Illumina Mouse WG6 microarray. Shown are correlation scatterplots of gene 
expression values on the log scale. The 11 genes identified in Chapter 5 Figure 1 are 
represented as red dots in each plot.  

Relationship Between Global CpG Methylation and Gene Expression  

To determine how many of these mechanosensitive DNA methylation patterns at 

the promoters correlate to gene expression patterns, we compared the promoter DNA 

methylation data to the gene transcript array data. First, the gene array data analysis 

showed that expression of 1,319 genes (569 down- and 750 upregulated) changed by 

more than 33% in the LCA compared to the RCA (Figure 4.3B and D). Treatment with 

5Aza decreased the number of differentially expressed genes to 385 (152 down- and 233 

upregulated in the LCA) between the Aza-RCA and Aza-LCA (Figure 4.3C). 

Importantly, 5Aza treatment rescued the downregulation of 540 out of the 569 

mechanosensitive genes in the LCA (Figure 4.3C and D), demonstrating the dominant 

effect of 5Aza treatment on mechanosensitive gene expression, either directly or 

indirectly (Figure 4.3B-D, Figure 4.4C and D).  
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Figure 4.4: Genome-wide methylation and gene expression patterns in partially-
ligated mouse carotids.  (A,B) Heatmap correlation scatterplots of the methylomes 
of the LCA compared to the Aza-LCA and the RCA compared to the Aza-RCA. 
(C,D) Gene expression was compared between the LCA vs. Aza-LCA and RCA vs. 
Aza-RCA obtained from endothelial RNA as described in Figure 4.3.  

Analysis of the DNA methylation levels around the transcription start site, gene 

body, and transcription termination site and its relationship to gene expression levels 

further analysis revealed that our RRBS and gene array datasets showed the expected 

pattern, wherein percent promoter methylation inversely correlated with gene expression 

levels on a global scale (Figure 4.5), whereas the same trends were not observed for the 

gene body (GB) and 3’ gene regions surrounding the transcription termination sites 
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(TTS). This finding is consistent with previous reports showing a close correlation 

between promoter hypermethylation and gene silencing 126, validating that our RRBS and 

transcriptome data sets behave in an expected and reliable manner.  

 

Figure 4.5: Global comparison of the RRBS data and the transcriptome data 
demonstrates that our datasets follow expected trends.  Comparison of DNA  
methylation to gene expression for the LCA and RCA of (A) untreated and (B) 
5Aza-treated mice for different regions of the genome: the transcription start site 
(TSS; the promoter is defined as within ± 1kb of a gene TSS), gene body (GB), and 
transcription termination site (TTS; defined as within ± 1kb of a gene TTS). The 
data for TSS shows the expected inverse correlation between promoter methylation 
and gene expression.  
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Emergent Methylation Patterns 

An a priori methylation pattern analysis was performed to determine the global 

behavior of methylation changes across the samples at each CG site by ranking the 

methylation ratio of each gene promoter among the 4 groups. This revealed a pronounced 

emergent methylation pattern, wherein gene promoters in the LCA (2,086 out of 16,493 

genes) were hypermethylated as compared to the RCA, Aza-LCA, and Aza-RCA (listed 

in decreasing order of methylation ratios, L>R>aL>aR; Figure 4.6). This supports our 

hypothesis that d-flow induces promoter hypermethylation in a subset of genes in the 

LCA in a DNMT-dependent manner. 
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Figure 4.6: Emergent methylation pattern analysis.  Analysis of gDNA methylation 
patterns existing in the RRBS datasets by ranking promoter methylation per gene 
for each RRBS sample (LCA=L, RCA=R, Aza-LCA=aL, and Aza-RCA=aR) 
revealed a pronounced emergent methylation pattern wherein gene promoters in the 
LCA are most methylated as compared to the RCA, Aza-LCA, and Aza RCA (in 
decreasing order).   

Functional Genomic Region Methylation Analysis 

In addition, and as expected based on literature reports, we found that overall 

promoter CGs were far less methylated (~29%) in comparison to genome-wide CGs 

(~78%) (Figure 4.7) 126. These results were expected because it is well-established that 

promoter CGs are in general demethylated as compared to their genome-localized 

counterparts 163. Enhancers had intermediate methylation levels (~43%) with slightly 

higher variability between the methylation levels of each enhancer due to the lower 

number of experimentally validated mouse enhancers (244) as compared to genes 

(~34,000) that existed in the VISTA enhancer database (Figure 4.7). Gene body 

methylation was slightly lower than genome-wide levels (~73%) and methylation near 

the 3’UTR in the transcription termination site (TTS) region was the most variable across 

RRBS samples, showing the strongest flow-dependent change at 2 days post-ligation 

(from 88% methylated in the RCA to 100% methylated in the LCA) (Figure 4.7). 

Contrary to our hypothesis, however, the CG methylation status of each type of 

functional genomic region we analyzed was similar regardless of flow conditions and 

5Aza treatment in the RCA, LCA, Aza-RCA and Aza-LCA (Figure 4.7), although this 

result is consistent with the small difference in the number of hypermethylated CG sites 

on the genome-wide level in LCA and Aza-LCA groups shown in Figure 4.3A and B. 

These results suggest a possibility that the 5Aza effect may be specific and limited to a 

relatively small number of genes. 
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Figure 4.7: Global percent methylation for each of the RRBS datasets was 
determined using only those sites covered by all datasets (the intersection of the 
RRBS datasets). The values were calculated by averaging the methylation ratios 
across every CG site in the genome or only within specific regions, including 
enhancers (experimentally validated by the VISTA enhancer browser), promoters 
(+/- 1 kb from the transcription start site, or TSS), gene body (the region between 
the TSS and TTS), and transcription termination site (TTS; defined as within ± 1kb 
of a gene TTS). 

Global and Promoter-specific Cyclic AMP Response Element CpG Methylation  

We next examined whether the CRE elements across the genome display this 

property of d-flow-induced hypermethylation that can be prevented by 5Aza. We found 

that CRE sequences across the genome were nearly fully methylated (95-100%) in all 

four groups (Figure 4.8A). However, CRE elements within just the promoter regions 

showed significantly less methylation compared to that of genome-wide CREs (Figure 

4.8B). In the LCA, the average percent methylation of promoter CREs was 8.7%, which 
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was decreased by ~2% in the Aza-LCA (Figure 4.8B). In both untreated and 5Aza-treated 

RCA, promoter CRE methylation was nearly zero, indicating the dramatic effect of s-

flow in preventing methylation of promoter CRE elements in the RCA (Figure 4.8B). It is 

interesting to note that 5Aza treatment showed only a small reduction in average 

promoter CG site methylation while it dramatically decreased CG methylation at specific 

gene promoters such as HoxA5, Klf3, Cmklr1, and Acvrl1, indicating a targeted effect of 

5Aza toward some gene promoters containing CREs. 

 

Figure 4.8: Global percent methylation for each of the RRBS datasets was 
calculated by averaging the methylation ratios across each CG site localized to CRE 
motifs in the genome (A) or only within promoter regions (B).  

In Figure 4.8 we determined that on average, promoter CRE CG sites have ~10% 

increase in methylation in the LCA, and we next sought to determine whether there exists 

a subset of genes with a more dramatic change. 

The Relationship Between Promoter CRE CpG Methylation and Gene Expression 

Using the 33,826 promoter sequences obtained from the Mm9 Genome Assembly 

using the UCSC Genome Browser, our string search for the three CRE motifs resulted in 

9,556 genes containing CGTCA in their promoter, 9,536 containing TGACG, and 863 

containing TGACGTCA which could be mapped to CG sites covered by our RRBS 
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datasets for 4,286 (CGTCA), 3,326 (TGACG), and 503 (TGACGTCA) genes. A 

preliminary analysis plotting the gene expression (probe intensity as a surrogate marker) 

vs CRE CG methylation ratio showed that there was a strong correlation between the 

promoter CRE methylation status and gene probe intensity measured by the microarray 

study (Figure 4.9).  

Based on these findings, we sought to discover whether flow affected a subset of 

these genes. We filtered the set of genes containing promoter CREs to determine whether 

there was a subset that had dramatic changes in promoter CRE methylation in d-flow 

conditions that could be linked with gene expression changes, and discovered a subset of 

genes for each CRE (Figure 4.10). Subsequently we focused the analysis to those genes 

with the most dramatically changed promoter CRE CG site corresponding to the most 

dramatic gene expression changes by thresholding so that only those genes that followed 

our expected trends (hypermethylation and lower probe intensity in the LCA vs. RCA) 

were kept (Figure 4.10). In this category, we observed that the most flow sensitive genes, 

occurring in the lower right hand quadrant of Figure 4.10D, contained a subset of genes 

we previously discovered by our initial filtering analysis, including HoxA5, Klf3, and 

Cmklr1 (Figure 5.4). We also discovered several novel flow sensitive genes, including 

Stim2, Lima1, Npr2, Slc29a1, and Pcdhga12 (Figure 4.10D). These genes display 

different sensitivities to 5Aza. For example, While Pcdhga12 and Lima1 expression 

increase due to 5Aza treatment, it does not appear to be due to a change in their CRE CG 

methylation status. This indicates that there may be an upstream signaling event that is 

affected by 5Aza and controls their downstream gene expression by a mechanism other 

than CRE CG methylation.  
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Figure 4.9: Global correlation between the methylation ratio of the promoter CRE 
and the corresponding gene’s expression for each (A) the LCA, (B) RCA, (C) 
AzaLCA, and (D) AzaRCA, and for each CRE motif (CGTCA, TGACG, and 
TGACGTCA).  
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Figure 4.10: Trajectory and differentials plots showing the change between LCA 
and RCA for each CRE motif  (CGTCA (A), TGACG (B), and TGACGTCA(C); (A-
C) arrows point from LCA values for CRE methylation and gene expression to RCA 
values for the same). The differences between gene expression and methylation for 
all d-flow-hypermethylated CRE CG sites are plotted for the LCA v RCA (D) and 
the AzaLCA v AzaRCA (E).  

Discussion 

The studies described in Chapter 4 analyzing the concomitant endothelial 

methylome and transcriptome enabled us to examine the effects of shear stress and the 

role of DNMT1 in global EC DNA methylation and gene expression. We addressed the 

difficulty of tackling the widely unknown disease mechanism of atherosclerosis by 

limiting the scope of our project to a specific a priori hypothesis based on well-studied 

epigenetic mechanisms, and we recognize the limitations of such directed studies. We 
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used the knowledge that promoter CpG methylation causes gene supression to guide our 

studies and increase the likelihood of rapid, therapeutically actionable discoveries. The 

huge benefit of the data collected with our dual “omics” approach its availability and 

abundant potential for future analyses as new epigenetic mechanisms such as non-CpG 

methylation and functional genomic region methylation changes become clearer. 

5Aza treatment showed a dramatic effect in rescuing the mechanosensitive gene 

expression patterns, recovering nearly 540 genes out of 569 genes that were suppressed 

by d-flow in the LCA (Chapter 5 Figure 1) while having minimal effect on the RCA gene 

expression (Figure 4.4D). The lack of any significant effect of 5Aza on the RCA gene 

expression was surprising, but it may indicate that the 5Aza effect is limited only to the 

d-flow-sensitive genes in the LCA. This may be due to the hyperproliferative nature of d-

flow-exposed endothelial cells in the LCA while the RCA endothelial cells remain 

quiescent. This is consistent with the known effect of 5Aza, which functions in dividing 

cells such as those in leukemia and in the LCA endothelium. This notion is further 

corroborated by the lack of a widespread effect of 5Aza on the genome-wide DNA 

methylation patterns, although 5Aza did reduce the number of hypermethylated CG sites 

significantly for a limited subset of the methylome (from ~130,000 to ~55,000 sites in the 

LCA) and those CG sites may have a functional importance on gene expression (Figure 

4.3A and B).  

Given the known specificity of 5Aza action on highly proliferative myeloid cells 

as opposed to populations with a lower turnover rate, we were interested in exploring 

further whether the targeted effect of 5Aza in the LCA could be a result of altered rates 

on endothelial cell proliferation in altered shear stress conditions. It has been 
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demonstrated that overall rates of endothelial cell (EC) turnover in the artery are very 

low.164 More specifically, ECs in atherosclerosis-resistant regions of the artery have an 

approximate life span of 12 months.165 However, as demonstrated by multiple 

independent groups, when ECs are exposed to disturbed flow the turnover rate increases 

dramatically; ECs at these lesion-prone sites live for weeks and even shorter when 

animals age165,166.  

One of the most striking findings from our RRBS data was that CRE-localized 

promoter CG sites were not methylated at all (~0%) in the s-flow RCA, whereas CG sites 

across all regions of the promoter were ~30% methylated (Figure 4.7 and Figure 4.8). 

This suggests that there is an active hypomethylation mechanism that prevents these 

promoter CRE CG sites from being methylated.  

Our computational analyses in Chapter 4 overlaying the concomitant endothelial 

methylome and transcriptome datasets that we collected were designed to ask very 

specific questions regarding the importance of DNA methylation in atherosclerosis 

development. We also performed a posteriori analyses to allow the data itself to dictate 

the direction of our further analyses. We found that DNMT inhibition by 5Aza rescues 

global gene expression in the LCA towards the s-flow state. While our first pass analysis 

did not demonstrate dramatic genome-wide or functional genomic element methylation 

changes under these conditions, we followed a specific hypothesis and found a subset of 

genes that had d-flow-induced promoter hypermethylation correlating with gene 

suppression in which both were 5Aza-reversible. Using systems biology to direct our 

second pass genome-scale bioinformatics analysis, we discovered that gene promoters 

containing cyclic AMP Response Elements (CRE) are preferentially methylated by d-
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flow in a 5Aza-dependent manner. We further discovered that, on the genome scale, CRE 

hypermethylation corresponds to decreased gene expression. The studies presented in 

Chapter 4 used an “omics” approach to uncover a key gene regulatory network controlled 

by DNA methylation that plays an important role in the endothelial cell flow response. 
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CHAPTER 5 MASTER REGULATORS OF ENDOTHELIAL 

FUNCTION THAT ARE CONTROLLED BY DNA METHYLATION 

Summary 

To determine the mechanisms by which 5Aza inhibited atherosclerosis in vivo 

and endothelial cell inflammation in vitro, we tested the hypothesis that d-flow induces 

hypermethylation of anti-atherogenic endothelial cell genes at the promoter regions 

thereby silencing their expression, and that 5Aza treatment prevents this 

hypermethylation, leading to prevention of atherosclerosis.  

The aim of Chapter 5 was to discover genes that are important in endothelial 

biology and regulated by DNA methylation. Detailed examination of the RRBS and 

microarray led to 11 genes that were hypermethylated and had suppressed expression in 

d-flow, and these were reversed by treatment with 5Aza. These included HoxA5, 

Tmem184b, Adamtsl5, Klf3, Cmkrl1, Pkp4, Acvrl1, Dok4, Spry2, Zfp46, and F2rl1. We 

also found that genes containing promoter cyclic AMP response elements (CRE) are 

enriched in these hypermethylated, d-flow suppressed genes. 

Of note, HoxA5 showed the most robust flow-dependent changes in promoter 

methylation and gene silencing that was significantly reversed by 5Aza treatment, 

indicating the potential importance of DNMT-dependent mechanosensitive gene 

regulation by promoter methylation. In addition to HoxA5, we found that the entire 

family of Hox genes, including the co-localized mir10 family, had strong flow-dependent 

methylation changes in the same manner as described for the 11 genes. A portion of 

Chapter 4 was published as follows: Dunn, J., Qiu, H., Kim, S., Jjingo, D., Hoffman, R., 

Kim, C. W., Jang, I., Son, D. J., Kim, D., Pan, C., Fan, Y., Jordan, I. K. Jo, H. Flow-
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dependent epigenetic DNA methylation regulates endothelial gene expression and 

atherosclerosis. J Clin Invest 124, 3187-319916. 

Introduction 

Shear-Responsive Epigenetics 

Histone Modifications and Chromatin Remodeling  

Shear stress has been found to mediate chromatin remodeling and histone 

modifications and this is thought to play a role in shear-induced gene expression changes 

33,34. Early reports of shear-responsive epigenetics described novel pathways by which 

laminar shear mediates chromatin remodeling in cultured endothelial cells via histone 

H3/H4 acetylation and H3 phosphorylation 63,64.In ECs, LS activates genes with intrinsic 

histone acetyltransferase (HAT) activity, such as RSK-2 (ribosomal S6 kinase-2), MSK-1 

(mitogen- and stress-activated kinase-1), and CREB/CBP (cAMP-responsive element–

binding protein/CREB-binding protein) complexes. LS also deactivates histone 

deacetylases (HDACs), and induces histone H3/H4 acetylation and H3 phosphorylation 

in cultured ECs, and this regulates the key EC transcription factors Kruppel-like Factors 2 

and 4 (Klf2, Klf4), and the EC-specific gene endothelial nitric oxide synthase (eNOS), 

via myocyte enhancer factor-2 (MEF2)63,64,167. Conversely, OS causes HDAC 

overexpression, and HDAC inhibition prevents OS-induced EC proliferation and EC 

inflammation in vivo and in vitro 168-170.  

LS blocks HDACs from deacetylating the promoter of myocyte enhancer factor-2 

(MEF2), and this enables MEF2 to be active and mediate KLF2 and eNOS expression in 

LS167. OS induces HDAC overexpression and accumulation in the nucleus via 

phosphatidylinositol 3-kinase (PI3K)/Akt signaling, which blocks the expression of anti-
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inflammatory transcription factors Nrf2 (NF-E2-related factor 2, by HDAC2/3/5) and 

Mef2 (by HDAC1/2/3). It was further found that HDAC1/2/3 inhibition by siRNA or the 

class I-specific (HDAC1/2/3) inhibitor valproic acid prevented OS-induced EC 

proliferation in vivo and in vitro168.  

Endothelial-specific Gene Expression Mediated by Epigenetics 

Early single gene epigenetic studies were mainly focused on defining markers of 

cellular differentiation down the endothelial lineage. Understanding the function and 

regulation of genes that have EC-specific expression is of keen interest to researchers 

because the loss of normally constitutively active EC genes is a hallmark of EC 

dysfunction. 

Histone acetylation is important for both LS-induced and endothelial-specific 

expression of eNOS. HDAC inhibitor-induced increases in eNOS expression were linked 

to decreased DNA methylation of the eNOS promoter, and a trichostatin A (TSA) and 

5Aza combination treatment synergistically increased eNOS expression in non-ECs 171. 

This demonstrates the complementary interactions of histone modifications and DNA 

methylation. It was later found that the eNOS promoter is heavily methylated in non-ECs 

but demethylated in ECs, and that 5Aza treatment can induce eNOS expression in non-

ECs that normally do not express eNOS 172. This demonstrates that basal eNOS 

expression is regulated by DNA methylation. Methylation of the eNOS promoter blocks 

binding of Sp1, Sp3, and Ets1, and thus eNOS transcription 172.  

In addition to eNOS, Roundabout 4 (Robo4) is an EC-specific gene whose 

expression is controlled by promoter DNA methylation in non-ECs which prevents 

binding of essential transcription factor SP1. Both the methylation and gene expression 
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status of Robo4 in non-ECs can be reversed by treatment with 5Aza. Interestingly, while 

Robo4 is suppressed by LS and eNOS is suppressed by OS, neither Robo4 nor eNOS has 

shear-responsive promoter DNA methylation changes 65,173-175. Both eNOS and Robo4 

lineage-specific epigenetic changes have been carefully dissected to show that Robo4-

specific methylation patterns are established during the transition from ES to Flk-1+ 

mesodermal cells, while EC-specific eNOS DNA methylation and concomitant histone 

modifications appear in early proangiogenic cells 173,176.  

Studies of epigenetically-moderated EC-specific gene expression were expanded 

to a repertoire of EC-specific genes, and highly important EC genes PECAM1 (CD31), 

von Willebrand factor (vWF), VE-cadherin, and intercellular adhesion molecule-2 have 

EC-specific promoter demethylation. As with other genes, 5Aza induced their expression 

in non-ECs and TSA had a synergistic effect 177. These studies, taken together, 

demonstrate that DNA methylation is a key mechanism for EC-specific gene expression. 

DNA Methylation is a Novel Epigenetic Mechanism that Regulates Endothelial Cell 

Responses to Shear Stress 

Until recently, there had been little exploration on the potential for endothelial 

cell epigenetic responses to shear stress. In the spring of 2014, several research groups in 

vascular mechanobiology independently converged on the seminal finding that DNA 

methyltransferases are shear responsive proteins that regulate flow-mediated endothelial 

gene expression programs. 

Klf4 is a key mediator of endothelial function and has been well documented to 

maintain an anti-inflammatory, quiescent endothelial state in unidirectional flow 

conditions178-181. Very recently, DNA methylation was discovered as a novel, flow-
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mediated mechanism of endothelial Klf4 transcriptional regulation both in vitro and in 

vivo65. In this study, both DNMT3A expression and DNMT3A binding to the Klf4 

promoter were found to increase due to d-flow. This led to DNA hypermethylation and 

decreased MEF2 binding. MEF2 is a key transcription factor that controls Klf4 

upregulation in response to resveratrol in ECs182. DNMT inhibition by 5Aza or RG108 

rescued Klf4 expression and reversed the DF-induced loss of downstream Klf4 targets 

eNOS and thrombomodulin (THBD), and the DF-induced overexpression of the 

proinflammatory monocyte chemoattractant protein-1 (MCP-1).  

Shortly following these studies, Zhou et al. also reported that d-flow causes 

DNMT1 overexpression 66. Comparing OS to pulsatile, unidirectional shear in HUVECs, 

they found that OS increases DNMT1 mRNA and protein levels, DNMT1 nuclear 

translocation, and 5-methyl-cytosine (5mC) content. 5Aza treatment inhibited the OS-

induced DNMT1 expression and prevented increases in 5mC. Using a rat partial carotid 

ligation model, they demonstrated that d-flow also induced DNMT1 protein expression 

and increased 5mC content.  

The genome-wide studies of DNA methylation and gene expression we recently 

completed provide a much broader view of flow-mediated global DNA methylation 

changes that regulate networks of genes and have a functional effect on atherosclerosis 

development in vivo.  

The Homeobox and MicroRNA10 Gene Families 

Hox genes are homeobox transcription factors whose homeodomains recognize and 

bind to specific DNA sequences, enabling the coordinate regulation of sets of genes. Hox 
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genes are highly conserved, known to be dysregulated in cancer, and are controlled in 

part by DNA methylation183-188.  

The four Hox gene clusters are well known to play key roles in developmental 

patterning of the anteroposterior axis of bilaterian animals. The Hox families exhibit a 

high level of self-interaction, forming 3-dimensional chromatin conformations known as 

a topological domains 189. This global method of establishing a higher order genomic 

structure that also occurs specifically within Hox domains underscores the key 

importance of DNA domain interaction regulation by epigenetic mechanisms. Hox family 

members have been implicated in vascular remodeling, angiogenesis, and disease by 

orchestrating changes in gene expression, extracellular matrix, and integrins 190.  

HoxA5 is known to regulate various vascular functions such as migration, 

angiogenesis, and inflammation by controlling specific endothelial genes 191-195. HoxD3 

and HoxB3 are pro-invasive, angiogenic genes that upregulate β3 and α5 integrins and 

Efna1 in ECs, respectively 196-199. HoxA3 induces EC migration by upregulating 

metalloproteinase-14 (MMP14) and plasminogen activator urokinase receptor (uPAR) 

200. Conversely, HoxD10 and HoxA5 have the opposite effect of suppressing EC 

migration and angiogenesis, and stabilizing adherens junctions by upregulating TIMP1, 

downregulating uPAR and MMP14, and by upregulating Tsp2 and downregulating 

VEGFR2, Efna1, Hif1α and COX-2, respectively 192,193. HoxA5 also upregulates the 

tumor suppressor p53 and Akt1 by downregulation of PTEN 194. Suppression of HoxA5 

has been shown to attenuate hemangioma growth 195. HoxA5 has far-reaching effects on 

gene expression, causing ~300 genes to become upregulated upon its induction in breast 

cancer cell lines 201. HoxA5 protein transduction domain overexpression prevents 
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inflammation shown by inhibition of TNFα-inducible monocyte binding to HUVECs 

191,202. Our study shows, for the first time, that HoxA5 is downregulated by d-flow in a 

DNA methylation-dependent manner and that HoxA5 suppresses endothelial 

inflammation. 

Mir10a and Mir10b are located within the HoxB and HoxD clusters, respectively. 

Both the Hox and Mir10 families are highly evolutionarily conserved, known to be 

dysregulated in several cancers, and are controlled, at least in part, by DNA 

methylation.183-188 Interestingly, Mir10a and Mir10b were both found to be suppressed, 

and HoxA1 overexpressed, in endothelial cells in pro-inflammatory, athero-susceptible 

disturbed flow regions both in vitro and in vivo.79 Mir10a is a regulator of ~1,100 genes 

and was shown to directly target the inflammatory NFKB signaling network in 

endothelial cells.79,203 The known shear-sensitive, anti-atherogenic, tumor suppressor 

gene Klf4 is experimentally validated as a direct target of Mir10b.204 Mir10a and Mir10b 

differ by only one nucleotide and are experimentally validated to target a host of Hox 

genes. HoxA1, HoxA3, HoxD4, and HoxD10, are all targets of Mir10a, and Mir10b is 

thought to regulate HoxB4.186,205,206 De novo methylation at the HoxD4 promoter has 

been observed as a result of Mir10a targeting.206 While DNA methylation is known to be 

an important regulator of these genes under certain developmental and disease conditions, 

whether epigenetic DNA methylation in flow-exposed ECs is an important regulatory 

mechanism of atherosclerosis had not been previously explored. Additionally, Hox was 

not known to be a mechanosensitive gene family until now. The Hox/Mir10 clusters 

merit further study to understand their importance in EC biology and atherosclerosis. 
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Klf3 

Klf3 is a transcription factor, but unlike Klf2 and Klf4, which are well-known 

mechanosensitive transcriptional activators, Klf3 is known to repress transcription207-209. 

Interestingly, both HoxA5 and Klf3 are suppressed in acute myeloid leukemia (AML), 

and the DNMT inhibitor 5Aza is used to treat this disease. While HoxA5 is known to be 

hypermethylated in AML, it has not yet been shown whether 5Aza directly targets these 

genes for demethylation 210,211. AML is also treated with all-trans retinoic acid, a drug 

known to influence DNA methylation of a small number of specific genes and, also 

interestingly, this drug was shown to rescue Klf3 expression by an unknown mechanism 

99,212. It would be interesting to determine whether the therapeutic effects of 5Aza and all-

trans retinoic acid on AML are mediated, at least in part, by rescuing Klf3 promoter 

hypermethylation. 

Mechanosensitive MicroRNAs 

Multiple reports in recent years have indicated the crucial role that miRNAs play in 

the endothelial response to shear stress, as the levels of these miRNAs are directly altered 

in response to shear stress. These miRNAs are known as mechanomiRs and many have 

now been directly implicated in the pathogenesis of atherosclerosis. While some miRNAs 

become upregulated in LS conditions, and thus would be considered atheroprotective, 

many become upregulated in OS conditions, and thus are thought to be atherogenic. 

Some atheroprotective miRNAs that have been discovered in vitro are miR-10a, miR-19a, 

miR-21, miR-23b, miR-101, and miR-143/145 79,93,213-216. 

Conversely, miR-21, miR-92a, and miR-663 are mechanosensitive atheromiRs that 

become highly expressed in OS conditions 217-219. Also, miR-155 is a mechanosensitive 
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miRNA, but its role in atherosclerosis is unclear 220. Given the fact that miRNAs have 

hundreds of gene targets, unsurprisingly, many miRNAs (such as miR-21, 181, and 155) 

have played both anti-atherogenic and pro-atherogenic roles depending on cell type and 

stimulus 221. 

Although many miRNAs have been studied under in vitro conditions of shear stress, 

some miRNAs have directly been studied in mouse models of atherosclerosis. In 2013, 

our group discovered that a miR-712 becomes highly upregulated in endothelial regions 

exposed to d-flow in our murine model of disturbed flow-induced atherosclerosis. 

Furthermore, repression of miR-712 binding (by locked nucleic acid anti-miRNA) to its 

main target, tissue inhibitor of metalloproteinases (TIMP3), drastically inhibited 

endothelial dysfunction and atherosclerosis 222. Additionally, we found that the human 

ortholog of miR-712, miR-205, is also mechanosensitive and mediates the same effects 

both in atherosclerosis and in abdominal aortic aneurysm 223. Other miRNAs that have 

been demonstrated to directly play a role in atherosclerosis are miR-92a and miR-181b. 

Loyer and colleagues demonstrated that miR-92a inhibition by antagomiR treatment 

inhibited endothelial dysfunction and subsequent atherosclerosis in high-fat diet-fed LDL 

receptor-/- mice, whereas Sun et al. demonstrated that systemic injection of miR-181b in 

ApoE-/- mice led to its overexpression in endothelial cells and peripheral blood 

mononuclear cells (PBMCs) and subsequently inhibited NFκB activation and 

atherosclerosis development 224,225.  



www.manaraa.com 95 

Methods 

A Priori Filtering to Discover Mechanosensitive Genes Regulated by DNA Methylation 

Through DNA Methyltransferase 

The differentially methylated and differentially expressed genes were parsed according to 

our hypothesis that d-flow–induced hypermethylation at the promoter suppresses gene 

expression, and that this could be reversed by 5Aza. We performed thresholding to filter 

out genes that are hypermethylated in the promoter and suppressed by d-flow in a 5Aza-

preventable manner. Specifically, we looked for differentially methylated regions 

(DMRs) in gene promoters, defined by TSS ± 1 kb containing a minimum of 10 CG sites 

with a minimum difference in percent methylation (Δ % methylation = % methylation in 

the LCA – % methylation in the RCA) of 10. There were 421 such genes. We further 

parsed this list to genes whose promoter hypermethylation in LCA was prevented by 

5Aza (Δ% methylation = % methylation in the Aza-LCA – % methylation in the Aza-

RCA < 5), and this resulted in 335 genes. For the mRNA expression criteria, we looked 

for genes downregulated in LCA versus RCA (LCA/RCA < 0.67), which resulted in 569 

genes, and then we further looked for genes whose expression in LCA was rescued by 

5Aza (resulting in 540 genes). By combining these methylation and gene expression 

criteria, we extracted 11 genes that have d-flow–inducible hypermethylation and gene 

suppression that can be prevented by 5Aza. Of the resulting 11 genes, systems biology 

analysis via MetaCore revealed common regulation by the CREB transcription factor in 5 

of the 11 genes (only 4 of which had RRBS coverage specifically at the CRE sequence). 
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Systems Biology Analysis Led to CREB as a Key Network Regulator 

The GeneGO MetaCore program by Thomson Reuters is a data mining and 

pathways analysis tool that enables systems biology analysis of mammalian cells 

incorporating data from ligand-receptor binding interactions, cell signaling and regulation 

pathways, and metabolic pathways. We used this tool as recommended by the company 

to examine whether there were any common network regulators in our parsed gene set. 

The discovery of a common transcription factor as a central node in the systems 

biology analysis of the gene set led to a JASPAR analysis to determine the consensus 

binding motif, and the specificity of binding, for CREB1. 

The promoter sequences of the 11 genes (+/-1kb from the TSS) were obtained 

from the UCSC Genome Browser using the NCBI37/mm9 genome assembly. A string 

search was done for the consensus CREB binding motifs (TGACGTCA, TGACG, and 

CGTCA) on the positive strand of the promoter sequence, although strand configuration 

is unimportant due to the palindromic nature of the CRE sequence.  

QPCR and Single Locus Bisulfite Sequencing  

qPCR was done as described in Chapter 3 methods, and qPCR primers are listed 

in Bisulfite sequencing primers for HoxA5 (Chapter 3 Table 1) were designed using the 

MethPrimer program 226. Genomic DNA collected from 4 mouse carotid arteries as 

described previously was pooled, purified using the DNeasy Blood and Tissue Kit 

(Qiagen) and was bisulfite converted using the Epitect bisulfite conversion kit (Qiagen). 

10ng of bisulfite-converted DNA was subjected to PCR amplification using custom-

design BS-PCR primers (Chapter 3 Table 1) at a Tm of 59.5°C. 
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siRNA and monocyte adhesion 

siRNA and monocyte adhesion studies were performed as described in the 

methods section of Chapter 3. Dharmacon SmartPool siRNAs for HoxA5 and Klf3 were 

used. 

Results 

A Priori Filtering to Discover Mechanosensitive Genes Regulated by DNA Methylation 

Through DNA Methyltransferase 

In order to determine the most robustly flow-sensitive genes that are controlled by 

DNA methylation, we compared the list of mechanosensitive genes that were 

hypermethylated at their promoter and downregulated in the LCA in a 5Aza-dependent 

manner to determine the genes that exhibit the expected correlation between methylation 

and gene expression. This comparative analysis revealed 11 flow-sensitive genes that 

were hypermethylated at their promoter and silenced by d-flow that could be rescued by 

5Aza (Figure 5.1). These included HoxA5, Tmem184b, Adamtsl5, Klf3, Cmkrl1, Pkp4, 

Acvrl1, Dok4, Spry2, Zfp46, and F2rl1. Of note, HoxA5 showed the most robust flow-

dependent changes in promoter methylation and gene silencing that was significantly 

reversed by 5Aza treatment, indicating the potential importance of DNMT-dependent 

mechanosensitive gene regulation by promoter methylation. 
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Figure 5.1: D-flow induces promoter hypermethylation corresponding to suppressed 
expression in a subset of flow-sensitive genes.  (A and B) To identify 
mechanosensitive genes that are hypermethylated in their promoter and their gene 
expression downregulated in a 5Aza-dependent manner, the genes with 
hypermethylated promoters in the LCA that were rescued by 5Aza treatment were 
selected. Using the microarray data, the mechanosensitive genes that were 
downregulated by more than 33% in the LCA and rescued by 5Aza treatment were 
selected. These 2 selected gene lists were compared with each other, result- ing in 11 
genes that were hyper- methylated in the promoters and downregulated in a 5Aza-
dependent manner (data are shown as the mean ± SEM. *P < 0.05; **P < 0.05). 
Gene names containing hypermethylated promoter CRE sites in B are indicated 
with a single asterisk (*).  

Systems Biology Analysis Uncovered Cyclic-AMP Response Element Binding Protein 

(CREB) as a Common Network Regulator 

To explore whether there are any functional regulatory elements that are common 

within the promoter regions among the 11 genes, we first searched for common 

regulatory mechanisms of these genes. The systems biological analysis using GeneGo 
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MetaCore (Thomson Reuters) with these 11 genes as the input predicted CREB1 (CRE 

binding protein) as the transcription factor with the highest potential connectivity. Using 

JASPAR, we determined the CREB1 binding motif to be TGACGTCA (Figure 5.3). A 

thorough literature review revealed that CREB binds to both the full palindromic and also 

half sequence motifs (TGACGTCA, TGACG, and CGTCA). 

 

Figure 5.2: Systems biology analysis using MetaCore GeneGO shows CREB as a 
common network regulator in the parsed gene list. This zoomed in view of the 
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interaction network shows those 5Aza-rescuable, hypermethylated genes (HoxA5 
and Klf3) predicted by MetaCore to have a direct binding interaction with CREB. 
Further sequence analysis revealed that 5 out of the 11 genes contain CREB binding 
sites (Figure 5.4). 

 

 

 

 

 

Figure 5.3: JASPAR TFBS search revealed the consensus CREB binding motif 
sequence  of TGACGTCA. The size of the nucleotide corresponds to its importance 
in the binding interaction, with the third A being key to the interaction, and the 
other nucleotides having allowable variability of different levels and with different 
possible substitutions. 

The Subset of D-Flow Hypermethylated and Suppressed Genes That Are 5Aza-Rescuable 

Are Enriched For Genes with CRE Motifs in Their Promoter 

This led us to a computational sequence analysis designed to look for the full 

palindromic or half CRE sequences (TGACGTCA, TGACG, and CGTCA) within the 

differentially methylated regions (DMR) of the 11 gene promoters (+/- 1kb from the 

transcription start site). This search revealed that 5 of the 11 gene promoter DMRs 
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contained CRE sites, including HoxA5, Klf3, Cmklr1, Acvrl1 and Spry2. We then 

examined the DNA methylation status of these gene promoter DMRs at the specifically 

the CRE CG site and found that HoxA5, Klf3, Cmklr1, and Acvrl1 indeed showed 

significant hypermethylation at this CG in the LCA, which was prevented by 5Aza 

treatment (Figure 5.4A-D). For example, percent methylation of the HoxA5 promoter 

CRE CG site was dramatically higher in the LCA (55.6%) as compared to the RCA 

(11.5%), the Aza-LCA (17.2%), and the Aza-RCA (20.0%). The promoter CRE CG site 

in Spry2, however, was not fully covered by our RRBS data; therefore we could not 

determine its flow- and 5Aza-dependency.  

 

Figure 5.4: Gene promoters containing CRE are preferentially methylated by d-flow 
in a 5Aza-dependent manner.  Of the 11 genes in Figure 5.1, HoxA5, Klf3, Cmklr1, 
and Acvrl1 contain CREs in their promoter differentially methylated regions 
(DMRs). The methylation ratios (the number of methylated sequencing reads 
divided by the total number of sequencing reads) for the CG site within the CRE are 
displayed for each genomic DNA strand for the RCA, LCA, Aza-RCA, and Aza-
LCA, and average values are shown below in bar graphs.  
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Detailed analysis of the RRBS DNA methylation data in the HoxA gene cluster is 

shown in Figure 5.5 using a UCSC genome browser track to display our RRBS data at 

the nucleotide resolution. The HoxA5 promoter region was clearly hypermethylated in the 

d-flow LCA as compared to the s-flow RCA, the Aza-LCA, and the Aza-RCA (Figure 

5.5A). This RRBS result was further confirmed by manual bisulfite sequencing of 

additional endothelial gDNA obtained from the RCA, LCA, Aza-RCA, and Aza-LCA, 

validating the RRBS data (Figure 5.5A). Further, we validated the HoxA5 expression data 

obtained from the microarray study (Figure 5.5B) by qPCR (Figure 5.15C). The qPCR 

result showed that HoxA5 expression was downregulated in the LCA by more than 50% 

compared to the RCA and was reversed by the 5Aza treatment, validating the microarray 

result.  
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Figure 5.5: RRBS analysis reveals d-flow–induced HoxA5 promoter 
hypermethylation.  (A) DNA methylation data obtained from the RRBS study are 
shown using a University of California, Santa Cruz, browser track that displays our 
RRBS data sets. High methylation is denoted in yellow and low meth- ylation in red. 
(B) A zoomed-in view of the HoxA5 methylation patterns displaying ratios with the 
number of methylated sequencing reads divided by the total number of sequencing 
reads at each individual CG site.  

HoxA5 and Klf3 are Flow-sensitive Genes With Previously Unstudied Roles in 

Endothelial Biology 

Given the potential role of the transcription factors HoxA5 and Klf3 as master 

regulators of gene expression networks, we further examined their relevance to the 

endothelial flow response. We found that HoxA5 is strongly suppressed in response to 

disturbed flow (DF) in vivo by microarray and qPCR (Figure 5.5C and D, respectively), 

and oscillatory shear (OS) in HUVECs in vitro at both the mRNA and protein level 
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(Figure 5.6A and B). We found that the CRE in the promoter of HoxA5 is homologous 

between mouse and human, further implicating its potential importance in human 

pathology, as well as enabling further study of HoxA5 in cultured human ECs (Figure 

5.7). 

 

 

Figure 5.6: D-flow induces DNA hypermethylation of the HoxA5 gene promoter and 
downregulates its expression in a 5Aza-dependent manner.  (A) DNA methylation at 
the HoxA5 promoter region in endothelial-enriched genomic DNA from the LCA 
and RCA at 1 week after partial ligation from mice treated with saline or 5Aza was 
fur- ther examined in independent samples by bisulfite sequencing. Black and white 
circles represent methylated and unmethylated cytosines, respectively. Eight CG 
sites (denoted by the columns) were probed in this assay, and 8 to 10 colonies 
(denoted by the rows) were chosen for analysis. Percentages below the figures 
denote the aver- age percent methylation for this region of the HoxA5 promoter. (B 
and C) HoxA5 gene expression was examined in endothelial-enriched RNA from the 
LCA and RCA obtained at 1 week after partial ligation from saline- or 5Aza-treated 
mice by microarray analysis. Data for B are shown as the mean ± SEM. **P < 0.01, 
n = 3 each and were validated by qPCR. Data for C are shown.  (D) HoxA5 gene 
expression was examined in endothelial-enriched RNA from the LCA and RCA 
obtained over a timecourse using microarray analysis. 
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Figure 5.7: The sequence of the promoter CRE and surrounding region in HoxA5 is 
homologous in mouse (Sbjct) and human (Query).  
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Figure 5.8: HoxA5 and Klf3 are suppressed by OS in vitro, and HoxA5 increases 
LS-suppressed endothelial inflammation.  (A) HoxA5 expression and Klf3 
expression are suppressed by OS compared with LS.HUVECs exposed to LS (15 
dyn/cm2) or OS (±5 dyn/cm2, at 1 Hz) for 24 hours were used for qPCR using 18S 
as an internal control (n = 6 each, data are shown as the mean ± SEM. **P < 0.01). 
(B) Western blot analysis for HoxA5 was performed on the same samples from A 
using β-actin as the loading control. The bar graph shows the ImageJ Western blot 
quantification normalized to β-actin (n = 3 each, data are shown as the mean ± 
SEM; *P < 0.05). (C and D) HUVECs were pre- treated with siRNA to HoxA5 or 
Klf3 (100 nM for 24 hours), and subsequently exposed to OS or LS for an additional 
24 hours. Following shear, endothelial inflammation was determined by 
quantification of the number of THP-1 monocytes adhered to sheared endothelial 
cells (n = 3 each, data are shown as the mean SEM. *P < 0.05)  

Similarly, Klf3 mRNA expression is suppressed by d-flow both in vivo (Figure 

5.1) and in vitro (Figure 5.6A). We were not able to determine Klf3 protein due to a lack 

of adequate antibody for western blot. To analyze the role of these transcription factors in 

endothelial inflammation, we performed monocyte adhesion assays using siRNAs to each 

HoxA5 and Klf3 in HUVECs under shear. We found that in the LS condition, 
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knockdown of HoxA5 significantly increased monocyte adhesion to HUVECs, 

simulating the OS condition of increased inflammation (Figure 5.6C). However, 

knockdown of Klf3 did not have a significant effect on endothelial inflammation, 

suggesting its potential importance in other flow-responsive pathways (Figure 5.6D).  

We attempted to recapitulate the methylation changes seen in the HoxA5 

promoter in vivo using cultured ECs but these changes do not appear to occur in cultured 

cells. We believe this can be attributed to the methylation changes that occur as a result 

of culturing cells under static, no flow conditions which has been well documented 227,228. 

 

Figure 5.9: In vitro HoxA5 bisulfite sequencing using various endothelial cell types 
at multiple shear timepoints (immortalized mouse aortic endothelial cells (iMAEC) 
for 24 hour shear using the cone and plate system, human umbilical vein endothelial 
cells (HUVEC) and human aortic endothelial cells (HUVEC) both using the Ibidi 
system for long-term shear) in vitro shows that HoxA5 is essentially demethylated in 
all cases of cultured ECs regardless of flow conditions. The equivalent and 
homologous CRE CG site to our RRBS data is boxed in red.  
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We examined the expression of the 5 potentially CREB-regulated genes in vitro to 

determine whether their flow- and 5Aza-sensitivity demonstrated in vivo could be 

recapitulated in vitro. After 5 days of 5Aza treatment, HUVECs were subjected to 24h of 

shear and qPCR was done to determine gene expression levels. We found that OS 

downregulates expression of HoxA5, Klf3, and Cmklr1 (Figure 5.10). Additionally, 5Aza 

rescues expression of Klf3, Cmklr1, and Spry2 in LS, and also slightly rescues their 

expression in OS (Figure 5.10). These results also demonstrate the limitations of in vitro 

studies using cultured ECs, which often do not recapitulate biological events that occur in 

vivo. 

 

Figure 5.10: Shear- and 5Aza-sensitivity of the potential CREB-regulated genes in 
vitro (LS, AzaLS, AzaOS N=6; OS N=7) 
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Hox is a novel mechanosensitive gene family regulated by DNA methylation  

The most prominent changes in DNA methylation in our RRBS dataset occur in the Hox 

gene family. Overall, there was very high coverage of CG sites localized to the Hox 

family gene clusters by our RRBS assay, and these sites exhibit the strongest and more 

densely packed changes in methylation in the d-flow LCA as compared to the non-d-flow 

RCA. These methylation changes occur mainly at key functional regions, including 

promoters where methylation is associated with gene suppression, intron/exon boundaries 

where methylation may be associated with alternative transcript expression, and 

surrounding microRNAs (Figure 5.11A and B). Many of these changes are also 5Aza-

reversible (Figure 5.11A). 
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Figure 5.11: Flow regulates DNA methylation of the Hox family. (A) HoxA, HoxB, 
and HoxD gene family DNA methylation changes in endothelial cells due to 
disturbed flow are seen by reduced representation bisulfite sequencing (RRBS) 
using the mouse partial carotid ligation model. (B) RRBS data in UCSC Genome 
Browser showing 5Aza-reversible, d-flow-induced Hox promoter hypermethylation 
regions that also correspond to microRNAs: the Mir10a/HoxB4 shared promoter 
(upper panel) and the Mir10b/HoxD3 shared promoter (lower panel) are boxed in 
green. High methylation (yellow) and low methylation (red).  

The Hox families exhibit a high level of self-interaction, forming 3-dimensional 

chromatin conformations known as a topological domains 189. This global method of 

establishing a higher order genomic structure that also occurs specifically within Hox 

domains underscores the key importance of DNA domain interaction regulation by 

epigenetic mechanisms. Although the different Hox family subsets are located across 

different chromosomes, they appear to be co-regulated by methylation. In mouse, the 

HoxA, B, and D families are located on chromosomes 6, 11, and 2, respectively. 
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DNA methylation of Hox genes is a very well studied mechanism of their 

regulation in both development and cancer 229-231. While it is known that Hox genes’ 

DNA methylation status is a useful marker to distinguish between cell types for 

differentiation, we demonstrate below in Figure 5.12 that this is explicitly the case in the 

transition of cell type-specific differentiation. Comparison of the HoxA5 promoter 

methylation profile across cell types from the least differentiated (human embryonic stem 

cells) to the most endothelial-like (human umbilical vein endothelial cells, or HUVECs) 

using ENCODE datasets, as demonstrated by Shirodkar et al. for eNOS and VE-

Cadherin, shows that the HoxA5 promoter is normally heavily methylated in non-

differentiated cells and becomes demethylated as cells differentiate down the endothelial 

lineage (Figure 5.12B) 177,232. We had difficulty recapitulating the in vivo HoxA5 shear 

responsive methylation changes using two different in vitro bioreactor systems to induce 

shear stress over cultured endothelial cells (Figure 5.9A). We determined that this was 

not due to experimental artifact caused by the bisulfite sequencing conditions (Figure 

5.9B). This may be due to significant epigenetic changes occurring during EC culture 

under static conditions and raises an important consideration for the limitations of in vitro 

studies. 

Further, the functional importance of the HoxA5 promoter region in 

transcriptional regulation is demonstrated in Figure 5.12A. Using Encyclopedia of DNA 

Elements (ENCODE) project data to determine locations of transcription factor/complex 

binding to DNA, we discovered enriched Pol2 and CTCF binding at the CpG-dense 

HoxA5 promoter in HUVECs, demonstrating transcriptional activity (Figure 5.12A). The 

HoxA locus is known to contain an insulator characterized by several CTCF binding sites 
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that separate the co-regulation of expression of HoxA1-7 and HoxA9-13 233. CTCF is a 

DNA insulator binding protein that marks the transition from tightly packed 

heterochromatin to relaxed euchromatin. Pol2 contains the active subunit for synthesizing 

RNA from the DNA template, and in combination with other RNA polymerase subunits, 

forms the DNA groove binding domain. 

Our RRBS data indicates the key importance of genome-wide CREB binding sites 

(CRE) as a potential global regulator of gene expression. We expect that the HoxA5 

promoter CRE methylation status regulates CREB binding and downstream expression of 

HoxA5, but unfortunately neither CREB nor its binding partners p300/CBP were covered 

by the ENCODE consortium endothelial Chromatin-IP datasets. However, our lab is 

actively exploring this hypothesis using alternative methods. 
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Figure 5.12: Flow- and differentiation-dependent methylation changes in the HoxA5 
promoter. (A) UCSC Genome Browser view of the RRBS data showing flow-
dependent methylation changes in the HoxA5 promoter. (B) The ENCODE 
consortium ChIP-Seq datasets for HUVEC show that the transcription factor CTCF 
and RNA Polymerase II are enriched at the HoxA5 promoter. (C) Zoomed-in view 
of the blue boxed area from panel A. UCSC Genome Browser screenshot of the 
ENCODE Methyl450k array datasets, in the region boxed in red in (B), shows a 
comparison of the HoxA5 promoter methylation profile across cell types from the 
least differentiated (human embryonic stem cells) to the most endothelial-like 
(human umbilical vein endothelial cells, or HUVECs). (D) Highly methylated 
regions are shown in orange, partially methylated regions in purple, and 
unmethylated regions in blue. (E) The HoxA5 promoter CRE is not covered by the 
ENCODE dataset. (F) ENCODE Methyl450k array data shows that, as opposed to 
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the case for HoxA5, Klf3 does not demonstrate significant change in its promoter 
methylation status across differentiated and non-differentiated cells. 

The Mir10 family (Mir10a and Mir10b) lies within the Hox clusters and follows 

the criteria for 1) DF-induced suppression; 2) DF-induced promoter hypermethylation; 

and 3) 5Aza Inhibition of DF-induced promoter methylation. MiR10a and HoxB4 share a 

promoter and our RRBS data shows a differentially methylated region (DMR) following 

the proposed silencing pattern in this shared promoter. Additionally, MiR10b and HoxD3 

share a promoter that also contains a DMR following the proposed silencing pattern 

(Figure 5.13). Other Hox genes also repeatedly demonstrate this pattern (Figure 5.11). 

 

Figure 5.13: DNA methylation status of the MiR10a/HoxB4 and the MiR10b/HoxD3 
shared promoters which each contain 16 CG and 23 CG sites, respectively 
(corresponding to the area boxed in green in Figure 5.11B).  
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The Hox genes with strong promoter differential methylation (RRBS) that are 

suppressed in d-flow (microarray) include A1, A2, A3, A4, A5, A9, B4, D3, D4 (Figure 

5.11 and Figure 5.14). In vitro, HoxA1, A4, B4, D3, and D4 had trends toward 

downregulation by OS, but did not achieve statistical significance (Figure 5.15). 
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Figure 5.14: Gene array data for Hox Family Gene expression showing differentially 
expressed genes from (A) the HoxA cluster and (B) the other Hox genes. 



www.manaraa.com 120 

 

Figure 5.15: Shear-sensitivity of select Hox genes in vitro. HUVEC were subject to 
either LS or OS for 7 days using the Ibidi shear system (n=4 each). 

Discussion 

Using the DNA methylome and transcriptome datasets, our goal was to identify 

those genes that are hypermethylated in the promoter regions and silenced by d-flow, but 

that could be rescued by 5Aza treatment. Functional studies of DNA methylation patterns 

are complicated by the various, and often conflicting, reports of the role of specific 

methylation changes in gene expression control. The described study considered the 

functional consequences of specific methylation patterns by comparing the 

complementary transcriptome, and by performing rigorous single gene studies both in 

vitro and in vivo by a variety of methods including qPCR and bisulfite sequencing to 
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draw a definitive link between specific methylation patterns and the functional outcome 

of gene expression control. Ultimately these in vitro studies will be translated to disease 

development or prevention studies in vivo.  

We would like to emphasize the importance of the user-defined threshold values 

in our method of gene discovery that, by using more strict criteria, enabled us to filter out 

a manageable number of genes for further study. This unbiased genome-wide 

comparative analysis revealed 11 genes that fit these criteria. This result was surprising at 

first, since most of the downregulated genes by d-flow in the LCA were rescued by 5Aza 

treatment (540 out of 569 genes), and because the promoter DNA methylation patterns 

were rescued by 5Aza in the majority of genes (335 out of 421 genes) (Figure 5.1). This 

discrepancy between the 5Aza effect on gene expression and methylation and the number 

of genes that fit our hypothesis could be due to the following possibilities that: 1) 5Aza 

may target a few master regulators such as transcription factors that could in turn regulate 

the rest of the mechanosensitive genes; 2) there are only a few key CG sites on promoters 

that could determine the binding of master transcription factors, which determines the 

expression of most of the mechanosensitive genes; and 3) the majority of other CG sites 

in the promoters do not necessarily lead to functional consequences. To test these 

possibilities, we first searched for potential master transcription factors that could 

regulate the 11 mechanosensitive and 5Aza-sensitive genes using the MetaCore analysis. 

This suggested CREB as a potential master transcription factor that could bind to 5 out of 

the 11 genes. The subsequent computational sequence-based analysis showed that 4 of 

these genes (HoxA5, Klf3, Cmklr1, and Acvrl1) contained a CG site in the promoter CRE 

that was hypermethylated by d-flow in a 5Aza-dependent manner (Figure 5.4). Our 
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results also suggest that d-flow induces hypermethylation in these promoter CRE CG 

sites by a DNMT-dependent mechanism (Figure 5.4 and Figure 5.5), which in turn has a 

major impact on gene expression. 

We chose to study HoxA5 and Klf3 since they are transcriptional activators and 

repressors, respectively, potentially serving as a mechanosensitive master switch.201,207 

Our study implicates HoxA5 and Klf3 as novel mechanosensitive transcription factors 

regulated by DNA methylation that may serve as master regulators of global gene 

expression in response to flow. Interestingly, Klf3 is suppressed in acute myeloid 

leukemia (AML) and 5Aza is used to treat this disease, although it has not yet been 

shown whether 5Aza directly targets Klf3. AML is also treated with all-trans retinoic acid 

and, also interestingly, this drug was shown to rescue Klf3 expression by an unknown 

mechanism 99 Since all-trans retinoic acid is known to influence DNA methylation of a 

small number of specific genes 212, it would be interesting to test whether Klf3 is 

regulated by this mechanism in AML. Although our current study focused on examining 

the role of DNA methylation in vascular biology and disease, these results indicate that 

our work could have far-reaching implications across multiple diseases.  

Our in silico analysis suggests CREB as another key transcription factor whose 

DNA binding is known to be regulated by methylation of the CRE sites of its target 

genes, such as HoxA5 and Klf3149,154. It was shown previously that protein kinase A 

(PKA) downregulation in d-flow leads to decreased CREB phosphorylation and 

decreased CREB binding to CRE elements 160. Here, we identified a novel mechanism by 

which CREB binding to its gene targets may be decreased by d-flow via DNA 

methylation at their promoter CREs. We have been actively working to dissect the 
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detailed mechanism by which CREB may bind to the HoxA5 and Klf3 promoter CREs 

using chromatin immunoprecipitation assays combined with qPCR directed for the CRE. 

The results of this experiment combined with promoter CRE site-specific mutation or in 

vitro methylation of the CRE CG using luciferase assays with the Klf3 or HoxA5 

promoters will enable us to better understand the mechanism by which the expression of 

these master transcription factors is controlled. 

Functional studies of DNA methylation patterns are complicated by the various, 

and often conflicting, reports of the role of specific methylation changes in gene 

expression control. Here, we considered the functional consequences of specific 

methylation patterns by comparing the complementary transcriptome, and by performing 

single gene studies in vitro using qPCR, bisulfite sequencing, and EC inflammation 

assays. Follow-up studies initiated recently by new members in our lab will provide more 

in-depth analysis of a number of EC gene candidates that were illuminated by this study. 

This additional future work will help draw new definitive links between specific 

methylation patterns and the functional outcome of gene expression control and 

ultimately disease development or prevention. The results of this work compounded with 

future studies will continue to elucidate the epigenetic regulation of well known genes 

involved in atherogenesis and will also uncover novel shear sensitive genes and 

regulatory pathways that have yet to be discovered.  
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CHAPTER 6 DISCUSSION 
Here, we demonstrate for the first time, to our knowledge, that blood flow 

epigenetically controls endothelial gene expression by regulating genome-wide DNA 

methylation patterns in a DNMT-dependent manner. Our novel findings have broad 

implications for understanding the biochemical mechanisms of atherogenesis and provide 

a basis for identifying potential therapeutic targets for atherosclerosis.  

We found that d-flow induced expression of DNMT1 in mouse arterial 

endothelium in vivo and in cultured endothelial cells by oscillatory shear (OS) in vitro. 

The DNMT inhibitor 5-Aza-2’deoxycytidine (5Aza) or DNMT1 siRNA significantly 

reduced OS-induced endothelial inflammation. Moreover, 5Aza reduced lesion formation 

in two ApoE-/- mouse atherosclerosis models.  

We applied a dual “omics” approach by overlaying concomitant endothelial 

methylome and transcriptome datasets to determine the mechanism by which 5Aza 

inhibited atherosclerosis in our murine models. We performed reduced representation 

bisulfite sequencing (RRBS) and microarray using endothelial-enriched gDNA and RNA, 

respectively, from the partially-ligated left carotid artery (LCA exposed to d-flow) and 

the right contralateral control (RCA) of mice treated with 5Aza or vehicle. Systems 

biological analyses using RRBS and transcriptome data revealed 11 mechanosensitive 

genes whose promoters were hypermethylated by d-flow, but rescued by 5Aza treatment. 

Of those, the two transcription factors HoxA5 and Klf3 contain cAMP-response-elements, 

and their methylation status could serve as a mechanosensitive master switch in gene 

expression. The results of our combined genome-wide studies demonstrate that d-flow 

controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in 

turn alters endothelial gene expression and induces atherosclerosis.  
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These robust experimental strategies involved various models of shear stress 

using different endothelial cell types, both in vivo and in vitro. The recurrent findings by 

our group and also by others reveal that epigenetic mechanisms, and particularly DNA 

methylation, are key in regulating vascular biology, endothelial gene expression, and the 

pathophysiology associated with atherosclerosis.  

This project was the first of its kind to combine biomedical engineering 

approaches to understand the effect of mechanical forces on endothelial cell biology and 

cardiovascular disease development. We addressed the difficulty of tackling this widely 

unknown disease mechanism by limiting the scope of our project to a specific a priori 

hypothesis based on well-studied epigenetic mechanisms. However, our dual “omics” 

approach also allowed us to perform a posteriori analyses that enabled the discovery of 

previously unpredictable biological phenomena.  

The genome-wide approaches used here to resolve the endothelial DNA 

methylome and transcriptome were confined by the available and practical technologies 

existing at the time of this study. The transcriptome was determined using Illumina 

Mouse WG6 microarray chips, which limited the breadth of the gene expression study to 

the set of probes covered by the array. This precluded the ability to detect most 

alternative transcripts and noncoding RNAs, which recent evidence suggests may be 

important consequences of differential methylation at alternative intragenic promoters 

and in functional genomic regions that are as of yet undefined. Additionally, variability 

can exist due to differences in the arrays themselves, the dye labeling, efficiency in RNA 

amplification and reverse transcription, and hybridization 234. To address this to the best 

of our ability, we used biological replicates (n=3) consisting of pooled samples (3 carotid 
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arteries in each sample), and performed stringent quality control steps before and after the 

microarray process, including using the Bioanalyzer to analyze our purified RNA 

samples and qPCR validation of a subset of differentially expressed genes as determined 

by the microarray.  

Reduced representation bisulfite sequencing (RRBS) is widely accepted for 

genome-scale methylation studies at the nucleotide resolution, although incomplete CG 

coverage is an inherent limitation of RRBS due to the MspI restriction enzyme digest, 

PCR, and sequencing steps 235. These limitations produce partial genomic coverage, as 

evidenced by the 23% genomic and 53% promoter coverage of our RRBS assays. 

Additionally, we were only able to draw conclusions about differentially methylated 

regions with a functional effect on transcription by limiting our analysis to CG sites that 

were covered in all samples by both the microarray and RRBS. Therefore, genomic 

regions with partial coverage between samples or assays were not considered in this 

particular study, which could have resulted in overlooking potentially important 

methylation sites.  

We would also like to emphasize the importance of the user-defined threshold 

values in our method of gene discovery using both the methylome and transcriptome 

datasets. Using very strict criteria enabled us to filter out a manageable number of genes 

for further study in the scope of this project; however, releasing the threshold stringencies 

would result in more target genes for additional studies. 

Preexisting knowledge at the inception of this study surrounding DNA 

methylation, with a functional relevance to gene expression and disease, was mainly 

focused on CpG methylation in the promoter region of genes, especially in dense CpG-
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rich regions known as CpG islands. We used this knowledge base to guide our studies 

and increase the likelihood of rapid discovery. However, we are aware that DNA 

methylation in other locales, including coding or noncoding gene regulatory regions, and 

at other motifs such as CpH (where H is A/T/C), are known to be important for 

controlling gene expression, alternative transcripts, chromatin conformation and genome 

stabilization 125,126,129,236. While outside the scope of the current study, it would be quite 

interesting to examine whether there is d-flow-induced differential DNA methylation of 

non-CpG cytosines in endothelial cells, and whether any changes are localized to 

potentially functional genomic regions such as enhancers, promoters, intron/exon 

boundaries, transposable elements, 3’UTRs, transcription factor binding sites, and across 

the genome either sporadically or in the context of specific sequence motifs. 

While DNA methylation at the 5’ carbon of a cytosine base pair is the most well 

studied epigenetic covalent DNA modification, several others are known to exist and 

were recently implicated to be important in gene expression regulation, although their 

mechanisms are very unclear. These modifications include 5-hydroxymethylcytosine 

(5hC), 5-formylcytosine (5fC) and 5-carboxycytosine (5cC). Emerging methods of 

detection open up the possibility for future study of these cytosine modifications in 

endothelial biology and pathogenesis 237.  

5-Aza-2’-deoxycytidine (5Aza, also known as Decitabine) is a nucleoside analog 

that traps DNMT1 in a covalent complex with DNA, and also preferentially targets 

DNMT1 via ubiquitin-dependent proteasomal degradation, resulting in DNMT1 

inhibition 57. 5Aza is an FDA approved drug and is currently used to treat 

myelodysplastic syndromes including leukemia 57-62, but its specific mechanism of action 
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and gene targets need to be further determined 58. It should be noted that the dosing 

schedule for 5Aza affects treatment results depending on the dose, method of 

administration, and target tissue, especially due to its short half-life 62. In this study, a 

high frequency, low-dosing strategy was applied to target the endothelium, maintain 

efficacy over time, and reduce toxicity. To address the potential off-target effects of 

5Aza, we also used DNMT1 siRNA in our in vitro studies. However, the practical 

challenges associated with in vivo treatments using siRNAs precluded us from 

performing a DNMT1-specific inhibition study in vivo. During this project we began the 

development of endothelial-targeted DNMT1 knockout mice and in vitro characterization 

of novel DNMT1 chemical inhibitors described in Chapter 3. Both strategies can be 

exploited in future, more targeted in vivo studies of DNMT1. 

We also recognize the potentially important effect of 5Aza treatment in cell types 

other than endothelial cells that are involved in atherogenesis, including smooth muscle 

cells and immune cells. While the aim of our study was to determine whether there is a 

novel epigenetic mechanism of flow-regulated endothelial gene expression and whether it 

plays a vital role in atherosclerosis development, it was recently shown by Cao et al. that 

the anti-atherosclerotic effect of 5Aza also has a mechanistic basis in the immune milieu 

238. Because atherosclerosis is a systemic disease caused by multi-cell type dysfunctions, 

a systems wide approach will be necessary to understand the role of global methylation 

changes and crosstalk between cell types in order to fully realize the therapeutic potential 

of epigenetic interventions. 
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Conclusions  

The study presented here is the first to demonstrate that d-flow-induced global 

gene expression changes in endothelial cells are regulated at the genome level in a 

DNMT-and DNA methylation-dependent manner. We propose that d-flow induces 

DNMT1 expression in endothelial cells, which in turn stimulates DNA methylation in 

specific promoter CRE sites of mechanosensitive, master transcription factors including 

HoxA5 and Klf3. These master genes may then regulate expression of the majority of 

other mechanosensitive genes, resulting in endothelial dysfunction and atherosclerosis. 

We further propose that the DNMT inhibitor 5Aza targets these mechanosensitive master 

regulators to restore anti-atherogenic gene expression profiles. In conclusion, our study 

provides a novel insight into the mechanism by which flow regulates gene expression in a 

DNMT-dependent manner and uncovers novel genes involved in the endothelial cell flow 

response. 

Future Directions  

The goal of this project was to determine how the endothelial DNA methylome 

changes in response to flow, and how this in turn alters gene expression and regulates 

atherosclerosis development. We show that blood flow epigenetically controls endothelial 

gene expression by regulating genome-wide DNA methylation in CRE sequence motifs 

and at specific gene promoters in a DNMT-dependent manner. Several genes were 

identified that merit further study as potential therapeutic and diagnostic candidates, and 

lab members who recently joined our team are actively initiating these detailed studies.  

In Chapter 3 we establish that DNMT1 is upregulated in d-flow and that it plays a 

key role in atherosclerosis development. However, the upstream mechanism controlling 
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DNMT1 overexpression in this system is largely unknown. To address this, we 

performed preliminary studies on the mir29 family and we also developed a 

computational model of known mechanosensors that may control DNMT1 through 

biochemical signaling pathways. These preliminary studies will aid in future 

experimental design and validation of upstream regulators of DNMT1. Future studies 

involving pharmacological inhibitors and anti-miRs can be tested in vitro and in vivo to 

uncover the role of Mir29 in the flow regulation of DNMT1. In addition to the Mir29 

family, we may explore additional d-flow-suppressed miRs that are validated to target 

DNMT1, including the Let-7 family, as well as the other miRs listed in Chapter 3 Table 

2. PECAM1, CAV1, and VEGFR are three of the most important mechanosensors 

involved in atherosclerosis development, but conflicting findings on their expression and 

activity in disturbed flow and atherosclerosis have been reported.239,240 Our model 

predicts that a loss of PECAM1 and CAV1 leads to increased DNMT1 expression and 

future experiments using knockdown or overexpression of each of these 

mechanoreceptors individually will enable elucidation of the mechanism of the regulation 

of the DNMT1 shear response.  

While DNMT1 is the most dramatically altered DNMT at both the mRNA and 

protein level by d-flow in vitro, given our findings that DNMT3b is slightly upregulated 

by d-flow at the protein level (Chapter 3 Figure 11) and that DNMT3a has been found to 

be shear-responsive in ECs in other model systems 57,65, we believe that the DNMT 

family as a whole warrants further investigation. We foresee the benefit of future studies 

to analyze the role of the other catalytically active DNMTs (DNMT3a and DNMT3b) in 

EC functions. Additionally, these studies leave room for further analysis of the role of 
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DNMT1 in other EC biological functions in addition to inflammation. In Chapter 3 we 

show that DNMT1 inhibition reduces inflammation in ECs in vitro and plaque 

development in vivo. In order to determine whether there is a further functional role for 

DNMT1 in atherosclerosis development, additional markers of EC dysfunction that 

increase in d-flow (including inflammation, apoptosis, proliferation, thrombosis and cell 

migration) could be examined using either knockdown or overexpression of DNMT1 in 

future studies. We expect that certain specific markers will be more strongly affected by 

DNMT1 knockdown, which will implicate key gene regulatory pathways that can be 

examined further by systems biology and gene ontology studies. 

Drawing upon epigenetics-based cancer diagnostics currently in use, it is 

foreseeable that epigenetic targets such as DNMTs, specific gene promoter DNA 

methylation, histone modifications, and miRNAs could serve as biomarkers for 

cardiovascular disease diagnosis as well as targets for therapeutic intervention. In Chapter 

3 we show that DNMT1 inhibition by 5Aza blocks d-flow-induced atherosclerosis 

development in vivo in ApoE-/- mice. To address potential off-target effects and non-

tissue-specific effects of 5Aza, we began developing endothelial-targeted DNMT1 

knockout mice to test EC-specific DNMT1 knockdown on plaque development in vivo 

using the acute and chronic mouse atherosclerosis models. Full-body DNMT1 knockout 

is embryonic lethal90. Fortunately, floxed DNMT1 mice are commercially available (UC 

Davis- DNMT1tm2Jae fl/fl mice) and we have begun cross breeding these mice with 

endothelial-targeted Cre mice on an ApoE-/- background (VE-Cadherin-Cre+/-/ApoE-/- 

mice) that we already have in our lab. This will likely enable us to generate endothelial-
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specific DNMT1 knockout mice (DNMT1tm2Jae fl/fl/VE-Cadherin-Cre+/-/ApoE-/-) for 

subsequent chronic and acute atherosclerosis studies. 

We also began in vitro characterization of novel DNMT1 chemical inhibitors such 

as SGI-1027. SGI-1027 is a novel DNMT inhibitor that may become used routinely in 

place of 5Aza due to the cytotoxic effects of 5Aza treatment (both Decitabine and 

Vidaza) caused by their incorporation into DNA. SGI-1027 is a cell-permeable quinoline-

based non-nucleoside compound that inhibits DNMT1, DNMT3a, and DNMT3b and 

results in selective degradation of DNMT1. The mode of action of DNMT inhibition is 

thought to be by competing with AdoMet (S-adenosyl-L-methionine, SAM) for the 

enzyme's cofactor binding site. SGI-1027 has been shown to be more effective than 

Decitabine in reactivating methylation-silenced tumor suppressor genes without inducing 

genome-wide hypomethylation or caspase-3 activation. We performed dose optimization 

studies for novel DNMT1 chemical inhibitors that may be useful in future studies to 

increase specificity of DNMT1 inhibition and reduce potential off-target effects (Figure 

6.1)241.  
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Figure 6.1: Novel chemical inhibitors specific to DNMT1. Dose curve for SGI-1027 
(top) and single dose at 5uM of inhibitors MC2839 and MC2840 (bottom). 
Inhibitors were generously provided by Dr. Xiaodong Cheng. 

The fact that ten-eleven-translocation (TET) enzymes convert 5mC into 5hmC, 

which acts as an intermediate step to demethylated cytosine, introduces the important 

concept of site-specific DNA demethylation, which could play an important role in both 

regulating DNA methylation patterns as well as in establishing aberrant demethylation in 

disease242. Directing DNMT or TET to specific DNA sequences could one day be used as 

epigenetic editing techniques243,244. 

Our computational analyses in Chapter 4 overlaying the concomitant endothelial 

methylome and transcriptome datasets that we collected were designed to ask very 

specific questions regarding the importance of DNA methylation in atherosclerosis 

development. We addressed the difficulty of tackling the widely unknown disease 

mechanism of atherosclerosis by limiting the scope of our project to a specific a priori 

hypothesis based on well-studied epigenetic mechanisms, and we recognize the 

limitations of such directed studies. The huge benefit of the data collected with our dual 
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“omics” approach is the abundant potential for future analyses. For example, these RRBS 

datasets could be the subject of computational analyses to examine changes in non-CpG 

cytosine methylation, as well as CpG methylation changes in other functional regions 

such as introns, exons, intron/exon boundaries, transposable elements, and additional 

transcription factor binding sites or sequence motifs, among others. As a specific 

example, it would be interesting to examine whether other known transcription factor 

binding sites that have binding motifs very similar to the CRE sequence also have 

differential methylation for particular genes or on the genome scale. For example, JunD, 

CST6, and TGA1 all have similar sequence motifs to the CREB binding motif (Figure 

6.2).  

 

Figure 6.2: JASPAR TFBS search shows other transcription factors that bind to a 
similar sequence to CRE.The size of the nucleotide corresponds to its importance in 
the binding interaction, and stacked nucleotides at a single position have potential 
substitutions that affect the TF binding by different levels (corresponding to the 
height of the letter). 
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Very recent major technological developments in next generation sequencing now 

make it possible to repeat our transcriptome study using RNA sequencing to avoid 

sources of error due to microarray experimental setups. This would enable the discovery 

of flow-regulated differential expression of alternative transcripts and noncoding RNAs, 

as well as novel transcribed regions of the genome. 

Functional studies of DNA methylation patterns are complicated by the various, 

and often conflicting, reports of the role of specific methylation changes in gene 

expression control. In Chapter 5, we considered the functional consequences of specific 

promoter CpG methylation patterns by comparing the complementary methylome and 

transcriptome, and by performing single gene studies in vitro using qPCR, bisulfite 

sequencing, and EC inflammation assays. Follow-up studies initiated recently by new 

members in our lab will provide more in-depth analysis of a number of EC gene 

candidates that were illuminated by this study, including Tmem184b, Adamtsl5, Cmkrl1, 

Pkp4, Acvrl1, Dok4, Spry2, Zfp46, and F2rl1, as well as additional functional studies on 

HoxA5 and Klf3. This future work will help draw more definitive links between specific 

methylation patterns and the functional outcome of gene expression control and 

ultimately disease development or prevention.  

Although our current study focused on examining the role of DNA methylation in 

vascular biology and disease, the results in Chapter 5 indicate that our work could have 

far-reaching implications across multiple diseases. While 5Aza is currently used in the 

clinic to treat acute myeloid leukemia (AML), this drug has many potential side effects, 

limiting its therapeutic utility not only for atherosclerosis, but also for AML. Therefore, it 

is crucial to develop more targeted, clinically relevant therapeutic approaches for 
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cardiovascular disease by understanding the mechanism of key epigenetically-controlled 

genes. Defining the mechanisms by which HoxA5 and Klf3 are regulated and control cell 

function in endothelial cells may also help shed light on other disease mechanisms such 

as AML.  

With the understanding that global inhibition of the DNA methylation machinery 

would be an unwise therapeutic strategy given the key role that DNA methylation plays 

in both the global gene expression program as well as in genome stability, we foresee the 

major impact of this study as the identification of specific target genes that directly play a 

role in EC biological functions that regulate atherosclerosis. The results of this body of 

work compounded with future findings will continue to elucidate the epigenetic 

regulation of well known genes involved in atherogenesis and will also uncover novel 

shear sensitive genes and regulatory pathways that have yet to be discovered. 
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Appendix A 

Modeling Endothelial Cell Mechanoreceptors as Regulators of DNA 

Methyltransferase 
 

Methods 

In order to create a manageable model with the most relevant and accurate datasets available, a 

literature search was done to include the most prominent and well-studied mechanoreceptors that 

play a role in endothelial cell mechanotransduction (Table A1).  

 
Table A1: Mechanoreceptors Involved in Endothelial Cell Mechanotransduction of Flow 

Environment1 

Ion Channels Cell- Cell and Cell-Matrix 
Junctions 

• TRP (transient Receptor Potential) Channels 
a. TRPP1/TRPP2 (PC1/2 encoded by 

PKD1/2) 
b. TRPV4 
c. TRPC3 
d. TRPM7 

• P2RX4 purinoreceptors 
• Inward Rectifying K+ Channels 
• Outward Rectifying Cl- Channels 

 

• Integrins 
• PECAM1 
• Adherens Junctions 

a. VE Cadherin 
• Tyrosine Kinase Receptors 
• Caveolae 
• GPCRs/G-proteins 
• Glycocalyx 
• Cytoskeleton 

 

This list was reduced using the Ingenuity Pathways Analysis (IPA) toolkit, a proprietary 

algorithm that performs a systematic literature search on molecules of interest. IPA outputs the 

molecules’ connectivity based on publications detailing the mode of interaction of two or more 

species. This toolkit can also perform predictive analyses based on gene or protein sequence 

similarity; however, this function was not applied for the prescribed project. Only published data 

describing molecular interactions was used to create the model in order to maintain the highest 

level of accuracy possible. 

To produce the initial model, mechanoreceptors in Table A1 were used alongside 

DNMT1 as inputs into IPA and the ‘build-connect’ function was used to uncover true 

connections reported in the literature. No interactions existed directly between DNMT1 and a 

mechanoreceptor. This falls in line with literature reports that DNMT1 in general terminates 
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signaling cascades to directly transduce the biochemical signal into transcriptional changes. Due 

to lack of primary connectivity between species in the model, the ‘build-grow’ function was used 

to expand the network to putative secondary and tertiary interactions and the ‘build-connect’ 

function was iterated, restricting the resulting map to 100 molecules.   

This map was overly expansive given the desired scope of this particular model and thus 

the map was trimmed. We isolated only secondary and tertiary interactions in which intermediate 

signaling molecules had either a direct connection to a mechanoreceptor and also to DNMT1, or 

had just one intermediate signaling molecule. A highly interconnected map emerged from this 

analysis involving three mechanoreceptors, Platelet/Endothelial Cell Adhesion Molecule 1 

(PECAM1), caveolin 1 (CAV1), and Vascular Endothelial Growth Factor Receptor (VEGFR), 

and four intermediate signaling molecules, cyclin D1 (CCND1), Protein Kinase B (PKB, or 

AKT), annexin A5 (ANXA5), and embryonic ectoderm development (EED) (Figure A1). 

The nature and directionality of each connection in this conceptual model was expanded 

upon using literature reports. The findings could be summarized into a basic description of how 

the upstream molecule regulated either the expression or activity of the downstream molecule in 

the connection. Table A2 was created using this information. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure A1: A Schematic Representation of the Endothelial Cell Mechanoreceptors and the 

Signal Transduction Pathway to DNMT1 (‘a’ denotes activity and ‘e’ denotes expression). 
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Table A2: Interactions between molecules. P- signifies that a molecule is phosphorylated. 

 

 

In order to convert this information into a computational model, it was necessary to first 

define two crucial states for each molecule, expression (E), and activity (A). When E=0, the 

molecule is not expressed (this ignores the basal expression level, which is very low and 

negligible, and is assumed to be present even when E=0), and when E=1, the molecule is 

maximally expressed. When A=0, the molecule is inactive, and when A=1, the molecule is 

maximally active. A third state called (S) takes both the expression and activity into 

consideration, and three new states can be defined: S=0: not expressed, inactive; S=1: expressed, 

inactive; S=2: expressed, active. Assumptions were justified by literature evidence as detailed 

below: 

 

Assumptions and Logic Rules 

1. Activity and expression of the upstream “regulator” molecule are the two dominant factors 

affecting its downstream activity. This assumption should not affect the integrity of the 

model. 
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2. The effect of the upstream regulator on the expression or activity of the regulated molecule 

can be estimated by “Tri Boolean” logic†: 

a. If the regulator (r) decreases expression of the downstream molecule (d)† 

 Ed(t+1) Ad(t+1) 

Sr(t)=0 or 1 No change No change 

Sr(t)=2 0 No change 

b. If the regulator (r) increases expression of the downstream molecule (d) 

 Ed(t+1) Ad(t+1) 

Sr(t)=0 or 1 No change No change 

Sr(t)=2 1 No change 

c. If the regulator (r) decreases activity of the downstream molecule (d) 
 

 

 

 

 

d.  If the regulator (r) increases activity of the downstream molecule (d) 

 

 

 

 
 

†Assumes that the regulator must be both expressed and active (S=2) to alter the activity or 

expression of the downstream molecule, except in the case of a binding interaction, in which the 

regulator only needs to be expressed, but not necessarily active, to cause its downstream effect.  

 

3. If both binding partners are expressed (Er=1 and Ed=1) then they will bind and perform their 

function. Binding is dominated by chemical interactions and isn’t a function that requires 

activity, so only presence of the molecule is necessary.  

4. Homodimerization and heterodimerization interactions increase the activity of the proteins 

involved, and binding of two proteins does not affect the expression of either constituent. 

 Ed(t+1) Ad(t+1) 

Sr(t)=0 or 1 (non binding) No change No change 

Sr(t)=1 (binding) No change 1 

Sr(t)=2 (binding or non) No change 1 

 Ed(t+1) Ad(t+1) 

Sr(t)=0 or 1 (non binding) No change No change 

Sr(t)=1 (binding) No change 0 

Sr(t)=2 (binding or non) No change 0 
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This assumption is justified for this model in particular because as activation by complexing 

is a hallmark of the constituents in this system. This would not necessarily hold true in other 

molecular networks. 

5. If two interactions of equal an opposite affect are combined, then there is no resulting 

change. Thus, molecules are not weighted based on their ability to affect a downstream 

molecule (all affects are assumed to be equal). 

 

To test the model’s ability to recapitulate experimental findings, we perturbed system 

with the inclusion of 5’ Azacytidine, a DNMT1 inhibitor that has been used to treat various 

cancers because it blocks the methylation of anti-tumorigenic genes. Preliminary data from our 

lab shows that 5’ Azacytidine also inhibits the formation of atherogenic plaques, however, the 

mechanism behind this remains unclear. 5’ Azacytidine was shown to have an effect on both 

DNMT1 and the mechanoreceptor CAV1.  

A sensitivity analysis was done to discover whether there is correlation between the 

initial conditions of the mechanoreceptors and the time for the system to reach steady state. For 

this model, steady state was defined by the time (t) when the state S of each molecule in the 

system was equivalent to the state S at the next time step (t+1). In this event, the system cannot 

be perturbed out of steady state because no conditions in the current state may change (this 

model excludes noise and random perturbations that would truly exist in a stochastic system).  

  

Results 

In the first trial run, all possible initial states of the mechanoreceptors were used to find 

trends in the system. For all trials, the intermediate molecules (IM) were assumed to be 

expressed, because when IM are not expressed, DNMT1 will never become activated (Figure 

A3). The cases are divided by sets of initial conditions that conferred the same or similar results. 
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Figure A2: The case where S=0 for all IM. DNMT1 never becomes active. This state is 

ignored for trials varying mechanoreceptor states. 

 

Case 1. All 3 mechanoreceptors are expressed +/- active, or both M1 and M2 are expressed +/- 

active (but not necessarily M3) 

Table A3: Initial Conditions for Case 1 
 
 
 
 
 
 
   

 

 
Figure A3: The Dynamics of DNMT1 activity given different initial conditions. The 

numbers underneath the plots represent the state S of each molecule in the system for the 

above plot (the first 3 values are for M1, M2, and M3, the next four values are the 

intermediate molecules of the signaling pathway, and the last value is DNMT1). In the 

third graph, activity precedes expression due to the initial state setup, as described in the 

discussion section. 

 

The conclusion based on the above results is that negative feedback turns off DNMT1 

when both M1 and M2 are expressed +/- active, and that the state of M3 doesn’t affect Negative 

feedback. 

 
 
 

M1 M2 M3 

1 or 2 1 or 2 0, 1, or 2 
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Case 2. M1 or M2 or M3; M1&M3; M2&M3; No receptors expressed/active 
 

Table A4: Initial Conditions for Case 2 
 
     
        
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

Figure A4: The Dynamics of DNMT1 activity given the different initial conditions in Table 

A4. 

The conclusion based on the above results is that when M1 and M2 are not both 

expressed together, DNMT1 stays expressed and active indefinitely 

 

Case 3. The addition of the DNMT1 inhibitor 5’ Azacytidine under the previous initial 

conditions 

 
        Case 1 Initial Conditions        Case 2 Initial Conditions 

   

M1 M2 M3 

1 or 2 0 0 

1 or 2 0 1 or 2 

0 1 or 2 1 or 2 

0 1 or 2 0 
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Figure A4: The Dynamics of DNMT1 expression and activity under administration of 5’ 

Azacytidine (a DNMT1 inhibitor). (Right) M1 & M2, M1 & M3, M1 only  (Left) None, M2 

& M3, M2 only, M3 only 

 
The addition of 5’ Azacytidine causes the joint dependence of negative autoregulation on 

both M1 and M2 to be lost. Here, only M1 needs to be expressed to achieve negative 

autoregulation. The effects of expressed, or both expressed and active (denoted expressed +/- 

active) IM were also tested and the results are shown below in Figure A4. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
Figure A5: The effects of varying the initial states of IM from S=1 to S=2 for Case 3 

(DNMT1 inhibitor) so the effects on expression can be viewed in solation. (A) Delay in 

expression of DNMT1when IM are expressed but not active. (B) Delay, so shorter length of 

time of expression of DNMT1 when IM are expressed but not active. When M are 

expressed but inactive, shorter length of expression than when M are both expressed and 

active. 

 
Sensitivity Analysis 

The sensitivity analysis was done to test how the various initial conditions affect the time 

for the system to reach steady state. In this case, all possible initial states were tested 

(combinations of each molecule, where S=0, 1, or 2). Steady state is defined as the time when the 

state of each molecule does not deviate at the next timepoint.  It was found that under certain 
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conditions, shown below in Tables A5 and A6, the system reached steady state, however under 

the conditions in Table A7, the system never reached steady state. 

 
Table A5: Initial Conditions where  Table A6: Initial Conditions where  

steady state is reached at timestep   steady state is never reached. 

3 (top) or timestep 4 (bottom).  

   

 
 
 
 
 
 
 
 
 
 

 
It was found that under the conditions where steady state is not reached, one or more of 

the following 3 conditions are found to oscillate: M1 and/or M2 oscillate between active and 

inactive (S=1 or S=2) and IM4 between expressed and not expressed (S=0 or S-1). 

 
Discussion           Table A7: S Matrix 

 It would have been possible to set the initial conditions with an S matrix 

for all possible initial states of each molecule (Tab. 8). The current model, 

however, initiates separate E and A matrices to allow a state where E=0 and A=1 

that accounts for basal expression at E=0. The S matrix would equate the state 

where E, A=0 to E=0, A=1, but this neglects the activation of the basally expressed molecules. 

The current model maintained this state because it wasn’t clear if this detail would be important. 

However, this complicated matters because the initial states expanded from 6,561 possibilities 

(38) to 65,536 (28*28) possibilities. The method of programming also had redundancy in 

combining the E and A matrices. In the future expanded model this redundancy must be 

corrected or the method stated above for the S matrix will be implemented (and the basally 

expressed molecules will not be able to be activated in the model). 

In the first trial, to make the number of plots manageable, the initial conditions were only 

changed for the mechanoreceptor molecules since these molecules are a major control element of 

M1 M2 M3 IM 

1  1 1  1 or 2 

1 0 0 or 1 1 or 2 

0 1 0 or 1 1 or 2 

1 1 0 1 or 2 

M1 M2 M3 IM 

0 0 1 or 2 2 

M1 M2 M3 IM 

0 0 1  1 

0  0 0 0 

E A S 
0 0 0 
0 1 0 
1 0 1 
1 1 2 
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the system. Then, the values of the intermediate molecules were varied synchronously. Graphs 

for each set of initial conditions were only plotted in the case where the dynamics of DNMT1 

changed from the previous initial conditions. In the future model, a more systematic approach to 

plotting only the relevant graphs with important dynamical changes will be necessary to avoid a 

large number of redundant plots. 

The model proved useful for depicting the overall dynamics of DNMT1 expression and 

activity for different initial conditions. It was found that this model predicts a negative feedback 

mechanism for DNMT1 expression under certain initial conditions. Two mechanoreceptors  

(M1/PECAM1 and M2/ CAV1) are implicated to be vital to the negative feedback system, while 

the third mechanoreceptor (M3, or VEGFR) is not found to be involved in this negative 

feedback. When VEGFR is expressed +/- active in the absence of PECAM1 and CAV1 

expression, DNMT1 remains expressed indefinitely. 

 In disturbed flow conditions, three major mechanoreceptors, PECAM1, CAV1, and 

VEGFR, are involved in the development of atherosclerotic lesions, and DNMT1 expression is 

upregulated by an unknown mechanism. It has been shown that PECAM1-/- mice have reduced 

atherosclerotic lesions size,15 and that CAV1 expression is upregulated in atherosclerosis (but 

CAV1 is deactivated under disturbed flow)16. This model predicts that a loss of PECAM1 and 

CAV1 leads to increased DNMT1 expression, but the literature supports the idea that decreased 

expression of these mechanoreceptors leads to slowed atherosclerosis progression (which would 

imply lower DNMT1 levels). These conflicting results are not clear because there remain gaps in 

the literature, and also several assumptions were made for this working model, so the results may 

not be predictive of actual system. A brief discussion of the validity of important model 

assumptions follows.  

 

1. The assumption that the effect of the upstream regulator on the expression or activity of 

the regulated  molecule can be estimated by “Tri Boolean” logic leads to inaccuracy in 

the model and should be modified with data that quantitatively describes the extent to 

which the upstream regulator affects the expression or activity of the regulated molecule 

(e.g. downstream protein expression for regulator knockdown or overexpression by 

Western Blot can be semi-quantified by ImageJ).  
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2. The assumption that the effects of a molecule are not weighted by the specific molecule 

in question adds some uncertainty to the model, and the combinatorial effects of 

molecules will have to be determined by further mining of the literature to find available 

data.   

 

3. The assumption that if both binding partners are expressed then they will bind and 

perform their function should be modified in future studies. The rate of binding isn’t “all 

or nothing,” but rather depends on the relative amount of each molecule as well as their 

affinity to bind. The goal of this model was to support the educated design process of 

future experiments to study the  role of mechanoreceptors in the expression of DNMT1 

during the progression of atherosclerosis. It is likely that future experiments will involve 

knocking down or upregulating expression or activity of each of these mechanoreceptors 

individually and testing the changes in the state of DNMT1 to further clarify the 

mechanisms.  
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Appendix B 

 

Quantification of Endothelial Purity in genomic DNA and RNA preparations 

from mouse carotid arteries 

 

Our lab recently showed that partial ligation of the mouse carotid artery induces disturbed 

flow with characteristic low and oscillatory wall shear stress, which in turn rapidly induces 

atherosclerosis, directly demonstrating the causal relationship between disturbed flow and 

atherosclerosis.1 The goal of the studies detailed in Appendix B were to non-EC infiltration in 

our mouse partial carotid ligation model of atherosclerosis, which we have used to capture gene 

expression and epigenetic changes in endothelial cells caused by disturbed blood flow (d-flow).  

One major complication of DNA methylation studies on samples taken directly from in 

vivo is the possibility for the inclusion of multiple cell types. To ensure that changes seen in our 

DNA methylation and gene expression data could be attributed to the endothelial response to 

experimental conditions rather than differential DNA methylation or gene expression occurring 

across different cell types, we performed a brief study to measure the number of contaminating 

cell types we could expect in our endothelial cell genomic DNA and RNA preparations.  

Given our methods involving flushing of the complete vasculature, including the carotids, 

with saline prior to flushing with cell lysis buffer, we do not expect to see contamination of 

blood or other circulating cells. However, it is well established that immune cells invade the 

vessel wall to sites of injury. Because our disturbed flow conditions increase inflammatory 

signaling in the surrounding region, we expect that there should be some level of immune cell 

infiltration into the vessel wall, however, whether these cells would lie directly on the endothelial 

surface, causing them to be lysed along with our endothelial cells, was unknown.  

It is well established that ligation increases the number of monocytes in the media and 

developing intima in mouse partial-ligation models.2 Previously, our lab determined there are 

almost no monocyte, macrophage, or NK cell infiltrates (CD11B+ cells) in the intima.1 However, 

we did not characterize the total number of white blood cells present on the intima of the LCA or 

RCA. Here, we performed CD45+ cell staining and FACs to examine all leukocyte cell 

infiltrates, including T-cells and B-cells.  
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I.  Methods 

 

1) qPCR 

To assess EC purity for our mRNA preparations, we examined gene expression for the 

EC-specific platelet endothelial cell adhesion molecule 1 (PECAM1), smooth muscle cell-

specific alpha smooth muscle actin (αSMA), and immune-specific cluster of differentiation 

molecule 11B (CD11B) markers. C57Bl6 mice were partially ligated and carotid arteries were 

flushed with Qiazol lysis buffer at 7 days post-ligation. RNA was collected and purified as 

described in the methods section of Chapter 4.  

 

2) eNOS Bisulfite Sequencing 

Endothelial Nitric Oxide Synthase (eNOS) is a well-known EC-specific gene that is 

demethylated only in ECs, enabling its cell-specific expression3. We performed bisulfite 

sequencing on eNOS in our LCA/RCA model because others have shown that eNOS DNA 

methylation increases in endothelial cells exposed to d-flow. gDNA was collected from the 

carotid arteries using the same scheme as for qPCR, but flushing with Buffer and gDNA 

isolation as described in the Chapter 4 methods. Additionally, the leftover carotid tissue after 

flushing was saved and digested with Buffer AL, and genomic DNA was extracted by the same 

method. Bisulfite sequencing was done according to the protocol by Chan et al., using their 

primers listed in Table B1 and qPCR cycling methods detailed in their publication3. 

Table B1: Bisulfite sequencing primers to analyze DNA methylation in the mouse eNOS 

promoter3 

m_eNOS_Mu-409S AGATAGGAGAGGAGTAAGGGTGAATTT 

m_eNOS_Mu+73AS CCCTAAACCACAAAATAACCCAAACTC 

m_eNOS_Mu-230S GGTTTTTATTTATTAGTTTTAGTTTTT 

m_eNOS_Mu+57AS AACCCAAACTCCTAACCCACACTCTTC 

 

3) Immunohistochemistry and cell counting algorithm 

C57Bl6 mice were partially ligated and en face staining was done on the carotids either 

before or after flushing with Buffer AL at 7 days post-ligation. Frozen blocks containing the 

heart, aortic arch, and carotid arteries were prepared in TissueTek and stored at –80°C. 
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Immunohistochemistry was performed on sections from the frozen blocks using the following 

antibodies at a 1:50 dilution: VE-Cadherin (sc-6458; Santa Cruz Biotechnology), CD45 (13-

0454; eBioscience), and DAPI (1:10,000).  

The stained carotids were imaged using confocal microscopy. The field of view of each 

image was 0.25 mm2. The total number of cells present in the region was quantified using DAPI 

nuclear stain, the number of endothelial cells was quantified by the number of cells staining 

positive for VE-Cadherin, and the number of immune Cells was quantified by the number of 

cells staining positive for CD45. The CD45+ stain includes all leukocyte groups: Granulocytes, 

Monocytes, T lymphocytes, T helper cells, Cytotoxic T cells, B lymphocytes, Thrombocytes, 

Dendritic cells. 

To determine the ratio of endothelial and immune cells in the carotid intima, we 

developed and validated an automated method to count total cells, endothelial cells only, and 

CD45+ cells only using CellProfiler. The steps in our CellProfiler macro included first 

separating the confocal image by color filters into an RGB image.  

We then used the Blue image (DAPI-only) to define and remove SMCs from the total cell 

count. SMCs are easily identified according to their nuclear shape (Figure B1). We used 

eccentricity of the nucleus (blue stained area) as a measure of elongation to separate between 

ECs and non-ECs because EC’s are known to align with flow. We used published images by 

Ferrara et al. to define the nuclear eccentricity for a non-SMC as < 0.88, and for a SMC as > 

0.88.4 For reference, the eccentricity of a perfectly straight line is 1, and the eccentricity of a 

perfect circle is 0. We next counted the number of non-SMC nuclei (nucleus eccentricity < 0.88) 

and used this as the total cell count (ECs + intimal cell infiltrates). Automated cell counts for 

ECs, SMCs, and immune cells using Cell Profiler were validated by undergraduate researcher 

Daniel Kim for 50 images. 
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Figure B1: Differences in nuclear morphology found by Ferrara et al. are evident by 

nuclear staining of ECs and SMCs.4 

 
Figure B2: Cell Profiler macro was developed to count the number of endothelial cells 

based on their nuclear morphology. The ellipticity of objects identified by DAPI stain 

(nuceli; Blue channel image to left) was used as a threshold to distinguish between ECs and 

SMCs  
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To further determine the breakdown of ECs vs immune cells, we used the red image to 

count the number of CD45+ stained cells. We then determined the number of ECs by subtracting 

the number of CD45+ cells from the number of non-SMC cells. We validated this approach for 

determining the number of ECs using VE-Cadherin staining for ECs on separate samples.  

 

A workflow for the Cell Profiler macro is as follows: 

1. Separate the image into the Red, Green, and Blue (RGB) components  

2. Using the blue image (the DAPI stain), separate by eccentricity 

– Define non-EC cell nucleus eccentricity <0.88 

– Count # EC nuclei 

3. Using the CD45+ red image: 

– Count the number positive stained cells 

– Calculate the total # ECs = [nonSMC cells - CD45+ cells] 

4. Validate the EC count using the VECadherin+ green image: 

– # ECs ≈ # VECadherin-positive cells 

 

4) Fluorescence Activated Cell Sorting (FACs)  

FACs studies were performed with the help of Noah Alberts-Grill and Amir Rezvan. 

Secondary staining of CD45-biotin was performed using streptavidin-conjugated Qdot 655. 

Immunofluorescence was detected using a LSR II flow cytometer, using AccuCount Ultra 

Rainbow Fluorescent Particles to determine absolute cell numbers. All flow analyses were 

performed using FlowJo analysis software (v5.0). 
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II. Results 

 

1) qPCR 

As expected, we found that a low level of smooth muscle cell (SMC) and immune cell marker 

gene expression in our preparations. The levels of aSMA were consistent among all preps and 

CD11B was increased only in the LCA, with a reduction in its expression upon 5Aza treatment. 

This indicated that gene expression changes we observe could potentially be due to 

contaminating cell types, particularly of the immune milieu.  

 

 

 
Figure B3: Endothelial, Smooth Muscle, and Immune cell marker expression in 

endothelial-enriched carotid artery RNA preparations 

 

2) eNOS Bisulfite Sequencing 

Bisulfite sequencing of the eNOS promoter of gDNA from both endothelial-enriched and 

leftover tissue samples demonstrate that in the RCA endothelial-enriched gDNA, eNOS is 

demethylated at the promoter. In the LCA, eNOS is hypermethylated (~50% of clones are fully 

methylated), but upon treatment with 5Aza this hypermethylation is diminished. In the leftover 

samples consisting mainly of smooth muscle cells and fibroblasts, the eNOS promoter is heavily 

methylated. This indicates the validity of our endothelial-enriched gDNA preparation methods 
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from the carotid arteries, and that the ratio of infiltrating cells to ECs is not sufficient to 

contribute to BS-Seq results significantly.  

 
Figure B4: DNA methylation of EC and non-EC cells in the carotid arteries. 

As a specific example of this analysis, CG site #4 in Figure B4 has a methylation ratio of 8/11 

methylated CG sites, and so the eNOS promoter at site #4 in the LCA is ~73% methylated. If this 

result were due solely to infiltration of non-EC populations into our gDNA preparation, 

infiltrating cells would have to make up > 73% of the total cell population (8/11) in the LCA. 

This is because under normal circumstances endothelial cells are never methylated at this site 

(see site #4 of the RCA (Figure B4), and refer to Chan et al)3, and thus any methylation present 

would either have to come from infiltrating cells or increased methylation in ECs. Further results 

from cell counting below indicate that infiltrating cell types comprise a minimal subset of the the 

gDNA preparation, and thus we can attribute these methylation changes to endothelial cell DNA 

methylation changes rather than an increase in the number of non-ECs in the gDNA preparation.  

 

3) Immunohistochemistry and cell counting 

The cell profiler algorithms were able to distinguish well between ECs, SMCs, and immune 

cells. As can be seen in Figure B5 (lower panel), the EC nuclei line up with VECad+ cells, 

whereas the SMC nuclei do not. As a validation of our methods, we found that the number of 

EC’s we observed in the carotids and aortic arch were consistent with literature reports of EC 

densities in the LC, GC, and descending thoracic aorta (DT), where an EC density of ≈2500 ECs 
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per millimeter squared was reported in the murine aorta (Table B2).5 Final calculations of EC 

numbers is listed in Table B3.  

 

 
Figure B5: Representative images output from the Cell Profiler cell counting algorithm, 

showing processing steps from original RGB image (left) to capture of all non-SMC nuclei 

(center) to capture of CD45+ cells only (right). (upper) and VE-Cadherin/DAPI co-stain 

(lower) (20X magnification, 0.25 mm2 field of view) 
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Figure B6: Number of EC’s and Immune cells in either the vessel wall or the GC and LC 

per field view (n=3; each carotid imaged twice) 

 

Table B2: Number of EC’s observed in the carotids and aortic arch (left) are consistent 

with literature reports (right)5 

 

 

 

 

 

Although we have EC-enriched gDNA, there may be some heterogeneity due to 

contaminating cell types that have contributed their methylation signatures. We found our 

preparations to be at least 80% endothelial cells (Table B3). 

 

Table B3: The percent of EC vs. Immune cell populations existing on the inner surface of 

the vessel wall as determined by IHC staining and cell counting using Cell Profiler. 

 

% ECs % CD45+ cells 

LCA 80.2 19.8 

RCA 94.4 5.6 

GC 98.7 1.3 
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LC 90.7 9.3 

 

 

4) FACs validation of cell counts  

Our FACs analysis demonstrated a higher immune cell infiltration into the vascular wall than 

shown by the previous studies. However, these experiments were done on the whole vessel wall 

rather than just the intima, and thus we expect that a major portion of these infiltrating 

leukocytes are coming from regions of the blood vessel wall other than the intimal layer. This is 

supported by our previous experiments examining just the intimal layer. Additionally, we only 

performed two replicates (n=2, each contains 5 mouse carotids pooled), and although each 

replicate shows significant immune cell infiltration into the LCA of C57Bl6 mice 7 days post-

ligation, we cannot conclude whether these results are statistically significant from this data 

alone. 

 
Figure B7: FACs data of leukocyte infiltration into the carotid artery wall using whole 

digested arteries. 
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Figure B8: Number of CD45+ cells per artery. Each sample is 5 mouse carotid arteries 

pooled. Two samples are shown above. 

 

Discussion 

While our carotid intima DNA preparations using the flushing method are endothelial-

enriched, they are not 100% endothelial pure. We do expect some contributions of genetic 

material from non-endothelial cells, particularly infiltrating leukocytes, that settle on the intima 

of the vascular walls. It is of vital importance to understand the level of endothelial cell purity of 

our genomic DNA or RNA preparations obtained by flushing the intimal layer of the carotid 

artery. We thus undertook this study to quantify the number of CD45+ cells (which includes all 

leukocyte groups: Granulocytes, Monocytes, T lymphocytes, T helper cells, Cytotoxic T cells, B 

lymphocytes, Thrombocytes, Dendritic cells- cite).  

Detailed analysis of the results from these experiments indicate that we have minimal 

contamination from SMCs and immune cells in our endothelial preparations, and underscore the 

validity of our experimental and analytical methods for the following experiments.  
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